Metamath Proof Explorer


Theorem omnord1

Description: When the same non-zero ordinal is multiplied on the right, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of Schloeder p. 10. (Contributed by RP, 4-Feb-2025)

Ref Expression
Assertion omnord1 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) )

Proof

Step Hyp Ref Expression
1 omnord1ex ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) )
2 1on 1o ∈ On
3 2on 2o ∈ On
4 omelon ω ∈ On
5 peano1 ∅ ∈ ω
6 ondif1 ( ω ∈ ( On ∖ 1o ) ↔ ( ω ∈ On ∧ ∅ ∈ ω ) )
7 4 5 6 mpbir2an ω ∈ ( On ∖ 1o )
8 oveq2 ( 𝑐 = ω → ( 1o ·o 𝑐 ) = ( 1o ·o ω ) )
9 oveq2 ( 𝑐 = ω → ( 2o ·o 𝑐 ) = ( 2o ·o ω ) )
10 8 9 eleq12d ( 𝑐 = ω → ( ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) )
11 10 bibi2d ( 𝑐 = ω → ( ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ↔ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ) )
12 11 notbid ( 𝑐 = ω → ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ↔ ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ) )
13 12 rspcev ( ( ω ∈ ( On ∖ 1o ) ∧ ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ) → ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) )
14 7 13 mpan ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) → ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) )
15 eleq2 ( 𝑏 = 2o → ( 1o𝑏 ↔ 1o ∈ 2o ) )
16 oveq1 ( 𝑏 = 2o → ( 𝑏 ·o 𝑐 ) = ( 2o ·o 𝑐 ) )
17 16 eleq2d ( 𝑏 = 2o → ( ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) )
18 15 17 bibi12d ( 𝑏 = 2o → ( ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) )
19 18 notbid ( 𝑏 = 2o → ( ¬ ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) )
20 19 rexbidv ( 𝑏 = 2o → ( ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) )
21 20 rspcev ( ( 2o ∈ On ∧ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) )
22 3 14 21 sylancr ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) )
23 eleq1 ( 𝑎 = 1o → ( 𝑎𝑏 ↔ 1o𝑏 ) )
24 oveq1 ( 𝑎 = 1o → ( 𝑎 ·o 𝑐 ) = ( 1o ·o 𝑐 ) )
25 24 eleq1d ( 𝑎 = 1o → ( ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) )
26 23 25 bibi12d ( 𝑎 = 1o → ( ( 𝑎𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) )
27 26 notbid ( 𝑎 = 1o → ( ¬ ( 𝑎𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ¬ ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) )
28 27 rexbidv ( 𝑎 = 1o → ( ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) )
29 28 rexbidv ( 𝑎 = 1o → ( ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) )
30 29 rspcev ( ( 1o ∈ On ∧ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) )
31 2 22 30 sylancr ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) )
32 1 31 ax-mp 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) )