Step |
Hyp |
Ref |
Expression |
1 |
|
omnord1ex |
⊢ ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) |
2 |
|
1on |
⊢ 1o ∈ On |
3 |
|
2on |
⊢ 2o ∈ On |
4 |
|
omelon |
⊢ ω ∈ On |
5 |
|
peano1 |
⊢ ∅ ∈ ω |
6 |
|
ondif1 |
⊢ ( ω ∈ ( On ∖ 1o ) ↔ ( ω ∈ On ∧ ∅ ∈ ω ) ) |
7 |
4 5 6
|
mpbir2an |
⊢ ω ∈ ( On ∖ 1o ) |
8 |
|
oveq2 |
⊢ ( 𝑐 = ω → ( 1o ·o 𝑐 ) = ( 1o ·o ω ) ) |
9 |
|
oveq2 |
⊢ ( 𝑐 = ω → ( 2o ·o 𝑐 ) = ( 2o ·o ω ) ) |
10 |
8 9
|
eleq12d |
⊢ ( 𝑐 = ω → ( ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ) |
11 |
10
|
bibi2d |
⊢ ( 𝑐 = ω → ( ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ↔ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ) ) |
12 |
11
|
notbid |
⊢ ( 𝑐 = ω → ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ↔ ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ) ) |
13 |
12
|
rspcev |
⊢ ( ( ω ∈ ( On ∖ 1o ) ∧ ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ) → ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) |
14 |
7 13
|
mpan |
⊢ ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) → ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) |
15 |
|
eleq2 |
⊢ ( 𝑏 = 2o → ( 1o ∈ 𝑏 ↔ 1o ∈ 2o ) ) |
16 |
|
oveq1 |
⊢ ( 𝑏 = 2o → ( 𝑏 ·o 𝑐 ) = ( 2o ·o 𝑐 ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝑏 = 2o → ( ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) |
18 |
15 17
|
bibi12d |
⊢ ( 𝑏 = 2o → ( ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) ) |
19 |
18
|
notbid |
⊢ ( 𝑏 = 2o → ( ¬ ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝑏 = 2o → ( ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) ) |
21 |
20
|
rspcev |
⊢ ( ( 2o ∈ On ∧ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 2o ↔ ( 1o ·o 𝑐 ) ∈ ( 2o ·o 𝑐 ) ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) |
22 |
3 14 21
|
sylancr |
⊢ ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) |
23 |
|
eleq1 |
⊢ ( 𝑎 = 1o → ( 𝑎 ∈ 𝑏 ↔ 1o ∈ 𝑏 ) ) |
24 |
|
oveq1 |
⊢ ( 𝑎 = 1o → ( 𝑎 ·o 𝑐 ) = ( 1o ·o 𝑐 ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑎 = 1o → ( ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) |
26 |
23 25
|
bibi12d |
⊢ ( 𝑎 = 1o → ( ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) ) |
27 |
26
|
notbid |
⊢ ( 𝑎 = 1o → ( ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ¬ ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑎 = 1o → ( ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) ) |
29 |
28
|
rexbidv |
⊢ ( 𝑎 = 1o → ( ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ↔ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) ) |
30 |
29
|
rspcev |
⊢ ( ( 1o ∈ On ∧ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 1o ∈ 𝑏 ↔ ( 1o ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) |
31 |
2 22 30
|
sylancr |
⊢ ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) ) |
32 |
1 31
|
ax-mp |
⊢ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ·o 𝑐 ) ∈ ( 𝑏 ·o 𝑐 ) ) |