Metamath Proof Explorer


Theorem oege1

Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of Schloeder p. 10. See oewordi . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oege1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊆ ( 𝐴o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 = ∅ → 𝐴 = ∅ )
2 0ss ∅ ⊆ ( 𝐴o 𝐵 )
3 1 2 eqsstrdi ( 𝐴 = ∅ → 𝐴 ⊆ ( 𝐴o 𝐵 ) )
4 3 a1i ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∅ → 𝐴 ⊆ ( 𝐴o 𝐵 ) ) )
5 simpl1 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → 𝐴 ∈ On )
6 oe1 ( 𝐴 ∈ On → ( 𝐴o 1o ) = 𝐴 )
7 5 6 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴o 1o ) = 𝐴 )
8 1on 1o ∈ On
9 8 a1i ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 1o ∈ On )
10 simp2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐵 ∈ On )
11 simp1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ On )
12 9 10 11 3jca ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( 1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) )
13 12 anim1i ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → ( ( 1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) )
14 eloni ( 𝐵 ∈ On → Ord 𝐵 )
15 10 14 syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → Ord 𝐵 )
16 simp3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐵 ≠ ∅ )
17 ordge1n0 ( Ord 𝐵 → ( 1o𝐵𝐵 ≠ ∅ ) )
18 17 biimprd ( Ord 𝐵 → ( 𝐵 ≠ ∅ → 1o𝐵 ) )
19 15 16 18 sylc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 1o𝐵 )
20 19 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → 1o𝐵 )
21 oewordi ( ( ( 1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 1o𝐵 → ( 𝐴o 1o ) ⊆ ( 𝐴o 𝐵 ) ) )
22 13 20 21 sylc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴o 1o ) ⊆ ( 𝐴o 𝐵 ) )
23 7 22 eqsstrrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → 𝐴 ⊆ ( 𝐴o 𝐵 ) )
24 23 ex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( ∅ ∈ 𝐴𝐴 ⊆ ( 𝐴o 𝐵 ) ) )
25 on0eqel ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )
26 11 25 syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )
27 4 24 26 mpjaod ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊆ ( 𝐴o 𝐵 ) )