Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) |
2 |
|
0ss |
⊢ ∅ ⊆ ( 𝐴 ↑o 𝐵 ) |
3 |
1 2
|
eqsstrdi |
⊢ ( 𝐴 = ∅ → 𝐴 ⊆ ( 𝐴 ↑o 𝐵 ) ) |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∅ → 𝐴 ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → 𝐴 ∈ On ) |
6 |
|
oe1 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o 1o ) = 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 1o ) = 𝐴 ) |
8 |
|
1on |
⊢ 1o ∈ On |
9 |
8
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 1o ∈ On ) |
10 |
|
simp2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐵 ∈ On ) |
11 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ On ) |
12 |
9 10 11
|
3jca |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( 1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ) |
13 |
12
|
anim1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → ( ( 1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) ) |
14 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
15 |
10 14
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → Ord 𝐵 ) |
16 |
|
simp3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
17 |
|
ordge1n0 |
⊢ ( Ord 𝐵 → ( 1o ⊆ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
18 |
17
|
biimprd |
⊢ ( Ord 𝐵 → ( 𝐵 ≠ ∅ → 1o ⊆ 𝐵 ) ) |
19 |
15 16 18
|
sylc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 1o ⊆ 𝐵 ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → 1o ⊆ 𝐵 ) |
21 |
|
oewordi |
⊢ ( ( ( 1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 1o ⊆ 𝐵 → ( 𝐴 ↑o 1o ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
22 |
13 20 21
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 1o ) ⊆ ( 𝐴 ↑o 𝐵 ) ) |
23 |
7 22
|
eqsstrrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) ∧ ∅ ∈ 𝐴 ) → 𝐴 ⊆ ( 𝐴 ↑o 𝐵 ) ) |
24 |
23
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( ∅ ∈ 𝐴 → 𝐴 ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
25 |
|
on0eqel |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
26 |
11 25
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
27 |
4 24 26
|
mpjaod |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊆ ( 𝐴 ↑o 𝐵 ) ) |