| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2on |
⊢ 2o ∈ On |
| 2 |
|
1oex |
⊢ 1o ∈ V |
| 3 |
2
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
| 4 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
| 5 |
3 4
|
eleqtrri |
⊢ 1o ∈ 2o |
| 6 |
|
ondif2 |
⊢ ( 2o ∈ ( On ∖ 2o ) ↔ ( 2o ∈ On ∧ 1o ∈ 2o ) ) |
| 7 |
1 5 6
|
mpbir2an |
⊢ 2o ∈ ( On ∖ 2o ) |
| 8 |
|
oeworde |
⊢ ( ( 2o ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 2o ↑o 𝐵 ) ) |
| 9 |
7 8
|
mpan |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ ( 2o ↑o 𝐵 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 2o ↑o 𝐵 ) ) |
| 11 |
|
df-2o |
⊢ 2o = suc 1o |
| 12 |
|
onsucss |
⊢ ( 𝐴 ∈ On → ( 1o ∈ 𝐴 → suc 1o ⊆ 𝐴 ) ) |
| 13 |
12
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) → suc 1o ⊆ 𝐴 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → suc 1o ⊆ 𝐴 ) |
| 15 |
11 14
|
eqsstrid |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → 2o ⊆ 𝐴 ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
| 17 |
|
onsseleq |
⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ On ) → ( 2o ⊆ 𝐴 ↔ ( 2o ∈ 𝐴 ∨ 2o = 𝐴 ) ) ) |
| 18 |
1 16 17
|
sylancr |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o ⊆ 𝐴 ↔ ( 2o ∈ 𝐴 ∨ 2o = 𝐴 ) ) ) |
| 19 |
|
oewordri |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o ∈ 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
| 20 |
19
|
adantlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o ∈ 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
| 21 |
|
oveq1 |
⊢ ( 2o = 𝐴 → ( 2o ↑o 𝐵 ) = ( 𝐴 ↑o 𝐵 ) ) |
| 22 |
|
ssid |
⊢ ( 𝐴 ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) |
| 23 |
21 22
|
eqsstrdi |
⊢ ( 2o = 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) |
| 24 |
23
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o = 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
| 25 |
20 24
|
jaod |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( ( 2o ∈ 𝐴 ∨ 2o = 𝐴 ) → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
| 26 |
18 25
|
sylbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o ⊆ 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
| 27 |
15 26
|
mpd |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) |
| 28 |
10 27
|
sstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 𝐴 ↑o 𝐵 ) ) |