Step |
Hyp |
Ref |
Expression |
1 |
|
2on |
⊢ 2o ∈ On |
2 |
|
1oex |
⊢ 1o ∈ V |
3 |
2
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
4 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
5 |
3 4
|
eleqtrri |
⊢ 1o ∈ 2o |
6 |
|
ondif2 |
⊢ ( 2o ∈ ( On ∖ 2o ) ↔ ( 2o ∈ On ∧ 1o ∈ 2o ) ) |
7 |
1 5 6
|
mpbir2an |
⊢ 2o ∈ ( On ∖ 2o ) |
8 |
|
oeworde |
⊢ ( ( 2o ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 2o ↑o 𝐵 ) ) |
9 |
7 8
|
mpan |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ ( 2o ↑o 𝐵 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 2o ↑o 𝐵 ) ) |
11 |
|
df-2o |
⊢ 2o = suc 1o |
12 |
|
onsucss |
⊢ ( 𝐴 ∈ On → ( 1o ∈ 𝐴 → suc 1o ⊆ 𝐴 ) ) |
13 |
12
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) → suc 1o ⊆ 𝐴 ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → suc 1o ⊆ 𝐴 ) |
15 |
11 14
|
eqsstrid |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → 2o ⊆ 𝐴 ) |
16 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
17 |
|
onsseleq |
⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ On ) → ( 2o ⊆ 𝐴 ↔ ( 2o ∈ 𝐴 ∨ 2o = 𝐴 ) ) ) |
18 |
1 16 17
|
sylancr |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o ⊆ 𝐴 ↔ ( 2o ∈ 𝐴 ∨ 2o = 𝐴 ) ) ) |
19 |
|
oewordri |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o ∈ 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
20 |
19
|
adantlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o ∈ 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
21 |
|
oveq1 |
⊢ ( 2o = 𝐴 → ( 2o ↑o 𝐵 ) = ( 𝐴 ↑o 𝐵 ) ) |
22 |
|
ssid |
⊢ ( 𝐴 ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) |
23 |
21 22
|
eqsstrdi |
⊢ ( 2o = 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) |
24 |
23
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o = 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
25 |
20 24
|
jaod |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( ( 2o ∈ 𝐴 ∨ 2o = 𝐴 ) → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
26 |
18 25
|
sylbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o ⊆ 𝐴 → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
27 |
15 26
|
mpd |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 2o ↑o 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) |
28 |
10 27
|
sstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 𝐴 ↑o 𝐵 ) ) |