Step |
Hyp |
Ref |
Expression |
1 |
|
2on |
|- 2o e. On |
2 |
|
1oex |
|- 1o e. _V |
3 |
2
|
prid2 |
|- 1o e. { (/) , 1o } |
4 |
|
df2o3 |
|- 2o = { (/) , 1o } |
5 |
3 4
|
eleqtrri |
|- 1o e. 2o |
6 |
|
ondif2 |
|- ( 2o e. ( On \ 2o ) <-> ( 2o e. On /\ 1o e. 2o ) ) |
7 |
1 5 6
|
mpbir2an |
|- 2o e. ( On \ 2o ) |
8 |
|
oeworde |
|- ( ( 2o e. ( On \ 2o ) /\ B e. On ) -> B C_ ( 2o ^o B ) ) |
9 |
7 8
|
mpan |
|- ( B e. On -> B C_ ( 2o ^o B ) ) |
10 |
9
|
adantl |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> B C_ ( 2o ^o B ) ) |
11 |
|
df-2o |
|- 2o = suc 1o |
12 |
|
onsucss |
|- ( A e. On -> ( 1o e. A -> suc 1o C_ A ) ) |
13 |
12
|
imp |
|- ( ( A e. On /\ 1o e. A ) -> suc 1o C_ A ) |
14 |
13
|
adantr |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> suc 1o C_ A ) |
15 |
11 14
|
eqsstrid |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> 2o C_ A ) |
16 |
|
simpll |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> A e. On ) |
17 |
|
onsseleq |
|- ( ( 2o e. On /\ A e. On ) -> ( 2o C_ A <-> ( 2o e. A \/ 2o = A ) ) ) |
18 |
1 16 17
|
sylancr |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> ( 2o C_ A <-> ( 2o e. A \/ 2o = A ) ) ) |
19 |
|
oewordri |
|- ( ( A e. On /\ B e. On ) -> ( 2o e. A -> ( 2o ^o B ) C_ ( A ^o B ) ) ) |
20 |
19
|
adantlr |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> ( 2o e. A -> ( 2o ^o B ) C_ ( A ^o B ) ) ) |
21 |
|
oveq1 |
|- ( 2o = A -> ( 2o ^o B ) = ( A ^o B ) ) |
22 |
|
ssid |
|- ( A ^o B ) C_ ( A ^o B ) |
23 |
21 22
|
eqsstrdi |
|- ( 2o = A -> ( 2o ^o B ) C_ ( A ^o B ) ) |
24 |
23
|
a1i |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> ( 2o = A -> ( 2o ^o B ) C_ ( A ^o B ) ) ) |
25 |
20 24
|
jaod |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> ( ( 2o e. A \/ 2o = A ) -> ( 2o ^o B ) C_ ( A ^o B ) ) ) |
26 |
18 25
|
sylbid |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> ( 2o C_ A -> ( 2o ^o B ) C_ ( A ^o B ) ) ) |
27 |
15 26
|
mpd |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> ( 2o ^o B ) C_ ( A ^o B ) ) |
28 |
10 27
|
sstrd |
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On ) -> B C_ ( A ^o B ) ) |