Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A = (/) -> A = (/) ) |
2 |
|
0ss |
|- (/) C_ ( A ^o B ) |
3 |
1 2
|
eqsstrdi |
|- ( A = (/) -> A C_ ( A ^o B ) ) |
4 |
3
|
a1i |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> ( A = (/) -> A C_ ( A ^o B ) ) ) |
5 |
|
simpl1 |
|- ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> A e. On ) |
6 |
|
oe1 |
|- ( A e. On -> ( A ^o 1o ) = A ) |
7 |
5 6
|
syl |
|- ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> ( A ^o 1o ) = A ) |
8 |
|
1on |
|- 1o e. On |
9 |
8
|
a1i |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> 1o e. On ) |
10 |
|
simp2 |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> B e. On ) |
11 |
|
simp1 |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> A e. On ) |
12 |
9 10 11
|
3jca |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> ( 1o e. On /\ B e. On /\ A e. On ) ) |
13 |
12
|
anim1i |
|- ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> ( ( 1o e. On /\ B e. On /\ A e. On ) /\ (/) e. A ) ) |
14 |
|
eloni |
|- ( B e. On -> Ord B ) |
15 |
10 14
|
syl |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> Ord B ) |
16 |
|
simp3 |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> B =/= (/) ) |
17 |
|
ordge1n0 |
|- ( Ord B -> ( 1o C_ B <-> B =/= (/) ) ) |
18 |
17
|
biimprd |
|- ( Ord B -> ( B =/= (/) -> 1o C_ B ) ) |
19 |
15 16 18
|
sylc |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> 1o C_ B ) |
20 |
19
|
adantr |
|- ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> 1o C_ B ) |
21 |
|
oewordi |
|- ( ( ( 1o e. On /\ B e. On /\ A e. On ) /\ (/) e. A ) -> ( 1o C_ B -> ( A ^o 1o ) C_ ( A ^o B ) ) ) |
22 |
13 20 21
|
sylc |
|- ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> ( A ^o 1o ) C_ ( A ^o B ) ) |
23 |
7 22
|
eqsstrrd |
|- ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> A C_ ( A ^o B ) ) |
24 |
23
|
ex |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> ( (/) e. A -> A C_ ( A ^o B ) ) ) |
25 |
|
on0eqel |
|- ( A e. On -> ( A = (/) \/ (/) e. A ) ) |
26 |
11 25
|
syl |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> ( A = (/) \/ (/) e. A ) ) |
27 |
4 24 26
|
mpjaod |
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> A C_ ( A ^o B ) ) |