Metamath Proof Explorer


Theorem oege1

Description: Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of Schloeder p. 10. See oewordi . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oege1
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> A C_ ( A ^o B ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A = (/) -> A = (/) )
2 0ss
 |-  (/) C_ ( A ^o B )
3 1 2 eqsstrdi
 |-  ( A = (/) -> A C_ ( A ^o B ) )
4 3 a1i
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> ( A = (/) -> A C_ ( A ^o B ) ) )
5 simpl1
 |-  ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> A e. On )
6 oe1
 |-  ( A e. On -> ( A ^o 1o ) = A )
7 5 6 syl
 |-  ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> ( A ^o 1o ) = A )
8 1on
 |-  1o e. On
9 8 a1i
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> 1o e. On )
10 simp2
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> B e. On )
11 simp1
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> A e. On )
12 9 10 11 3jca
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> ( 1o e. On /\ B e. On /\ A e. On ) )
13 12 anim1i
 |-  ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> ( ( 1o e. On /\ B e. On /\ A e. On ) /\ (/) e. A ) )
14 eloni
 |-  ( B e. On -> Ord B )
15 10 14 syl
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> Ord B )
16 simp3
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> B =/= (/) )
17 ordge1n0
 |-  ( Ord B -> ( 1o C_ B <-> B =/= (/) ) )
18 17 biimprd
 |-  ( Ord B -> ( B =/= (/) -> 1o C_ B ) )
19 15 16 18 sylc
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> 1o C_ B )
20 19 adantr
 |-  ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> 1o C_ B )
21 oewordi
 |-  ( ( ( 1o e. On /\ B e. On /\ A e. On ) /\ (/) e. A ) -> ( 1o C_ B -> ( A ^o 1o ) C_ ( A ^o B ) ) )
22 13 20 21 sylc
 |-  ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> ( A ^o 1o ) C_ ( A ^o B ) )
23 7 22 eqsstrrd
 |-  ( ( ( A e. On /\ B e. On /\ B =/= (/) ) /\ (/) e. A ) -> A C_ ( A ^o B ) )
24 23 ex
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> ( (/) e. A -> A C_ ( A ^o B ) ) )
25 on0eqel
 |-  ( A e. On -> ( A = (/) \/ (/) e. A ) )
26 11 25 syl
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> ( A = (/) \/ (/) e. A ) )
27 4 24 26 mpjaod
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> A C_ ( A ^o B ) )