Step |
Hyp |
Ref |
Expression |
1 |
|
1oex |
|- 1o e. _V |
2 |
1
|
prid2 |
|- 1o e. { (/) , 1o } |
3 |
|
df2o3 |
|- 2o = { (/) , 1o } |
4 |
2 3
|
eleqtrri |
|- 1o e. 2o |
5 |
|
elneq |
|- ( 1o e. 2o -> 1o =/= 2o ) |
6 |
|
df-ne |
|- ( 2o =/= 1o <-> -. 2o = 1o ) |
7 |
|
necom |
|- ( 1o =/= 2o <-> 2o =/= 1o ) |
8 |
|
2on |
|- 2o e. On |
9 |
|
oe0 |
|- ( 2o e. On -> ( 2o ^o (/) ) = 1o ) |
10 |
8 9
|
ax-mp |
|- ( 2o ^o (/) ) = 1o |
11 |
10
|
oveq2i |
|- ( 2o ^o ( 2o ^o (/) ) ) = ( 2o ^o 1o ) |
12 |
|
oe1 |
|- ( 2o e. On -> ( 2o ^o 1o ) = 2o ) |
13 |
8 12
|
ax-mp |
|- ( 2o ^o 1o ) = 2o |
14 |
11 13
|
eqtri |
|- ( 2o ^o ( 2o ^o (/) ) ) = 2o |
15 |
8 8
|
pm3.2i |
|- ( 2o e. On /\ 2o e. On ) |
16 |
|
oecl |
|- ( ( 2o e. On /\ 2o e. On ) -> ( 2o ^o 2o ) e. On ) |
17 |
|
oe0 |
|- ( ( 2o ^o 2o ) e. On -> ( ( 2o ^o 2o ) ^o (/) ) = 1o ) |
18 |
15 16 17
|
mp2b |
|- ( ( 2o ^o 2o ) ^o (/) ) = 1o |
19 |
14 18
|
eqeq12i |
|- ( ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) <-> 2o = 1o ) |
20 |
19
|
notbii |
|- ( -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) <-> -. 2o = 1o ) |
21 |
6 7 20
|
3bitr4i |
|- ( 1o =/= 2o <-> -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) ) |
22 |
5 21
|
sylib |
|- ( 1o e. 2o -> -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) ) |
23 |
4 22
|
ax-mp |
|- -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) |