| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1oex |  |-  1o e. _V | 
						
							| 2 | 1 | prid2 |  |-  1o e. { (/) , 1o } | 
						
							| 3 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 4 | 2 3 | eleqtrri |  |-  1o e. 2o | 
						
							| 5 |  | elneq |  |-  ( 1o e. 2o -> 1o =/= 2o ) | 
						
							| 6 |  | df-ne |  |-  ( 2o =/= 1o <-> -. 2o = 1o ) | 
						
							| 7 |  | necom |  |-  ( 1o =/= 2o <-> 2o =/= 1o ) | 
						
							| 8 |  | 2on |  |-  2o e. On | 
						
							| 9 |  | oe0 |  |-  ( 2o e. On -> ( 2o ^o (/) ) = 1o ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( 2o ^o (/) ) = 1o | 
						
							| 11 | 10 | oveq2i |  |-  ( 2o ^o ( 2o ^o (/) ) ) = ( 2o ^o 1o ) | 
						
							| 12 |  | oe1 |  |-  ( 2o e. On -> ( 2o ^o 1o ) = 2o ) | 
						
							| 13 | 8 12 | ax-mp |  |-  ( 2o ^o 1o ) = 2o | 
						
							| 14 | 11 13 | eqtri |  |-  ( 2o ^o ( 2o ^o (/) ) ) = 2o | 
						
							| 15 | 8 8 | pm3.2i |  |-  ( 2o e. On /\ 2o e. On ) | 
						
							| 16 |  | oecl |  |-  ( ( 2o e. On /\ 2o e. On ) -> ( 2o ^o 2o ) e. On ) | 
						
							| 17 |  | oe0 |  |-  ( ( 2o ^o 2o ) e. On -> ( ( 2o ^o 2o ) ^o (/) ) = 1o ) | 
						
							| 18 | 15 16 17 | mp2b |  |-  ( ( 2o ^o 2o ) ^o (/) ) = 1o | 
						
							| 19 | 14 18 | eqeq12i |  |-  ( ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) <-> 2o = 1o ) | 
						
							| 20 | 19 | notbii |  |-  ( -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) <-> -. 2o = 1o ) | 
						
							| 21 | 6 7 20 | 3bitr4i |  |-  ( 1o =/= 2o <-> -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) ) | 
						
							| 22 | 5 21 | sylib |  |-  ( 1o e. 2o -> -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) ) | 
						
							| 23 | 4 22 | ax-mp |  |-  -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) |