Metamath Proof Explorer


Theorem oenassex

Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oenassex
|- -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) )

Proof

Step Hyp Ref Expression
1 1oex
 |-  1o e. _V
2 1 prid2
 |-  1o e. { (/) , 1o }
3 df2o3
 |-  2o = { (/) , 1o }
4 2 3 eleqtrri
 |-  1o e. 2o
5 elneq
 |-  ( 1o e. 2o -> 1o =/= 2o )
6 df-ne
 |-  ( 2o =/= 1o <-> -. 2o = 1o )
7 necom
 |-  ( 1o =/= 2o <-> 2o =/= 1o )
8 2on
 |-  2o e. On
9 oe0
 |-  ( 2o e. On -> ( 2o ^o (/) ) = 1o )
10 8 9 ax-mp
 |-  ( 2o ^o (/) ) = 1o
11 10 oveq2i
 |-  ( 2o ^o ( 2o ^o (/) ) ) = ( 2o ^o 1o )
12 oe1
 |-  ( 2o e. On -> ( 2o ^o 1o ) = 2o )
13 8 12 ax-mp
 |-  ( 2o ^o 1o ) = 2o
14 11 13 eqtri
 |-  ( 2o ^o ( 2o ^o (/) ) ) = 2o
15 8 8 pm3.2i
 |-  ( 2o e. On /\ 2o e. On )
16 oecl
 |-  ( ( 2o e. On /\ 2o e. On ) -> ( 2o ^o 2o ) e. On )
17 oe0
 |-  ( ( 2o ^o 2o ) e. On -> ( ( 2o ^o 2o ) ^o (/) ) = 1o )
18 15 16 17 mp2b
 |-  ( ( 2o ^o 2o ) ^o (/) ) = 1o
19 14 18 eqeq12i
 |-  ( ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) <-> 2o = 1o )
20 19 notbii
 |-  ( -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) <-> -. 2o = 1o )
21 6 7 20 3bitr4i
 |-  ( 1o =/= 2o <-> -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) )
22 5 21 sylib
 |-  ( 1o e. 2o -> -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) )
23 4 22 ax-mp
 |-  -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) )