Metamath Proof Explorer


Theorem oenassex

Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oenassex ¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜

Proof

Step Hyp Ref Expression
1 1oex 1𝑜V
2 1 prid2 1𝑜1𝑜
3 df2o3 2𝑜=1𝑜
4 2 3 eleqtrri 1𝑜2𝑜
5 elneq 1𝑜2𝑜1𝑜2𝑜
6 df-ne 2𝑜1𝑜¬2𝑜=1𝑜
7 necom 1𝑜2𝑜2𝑜1𝑜
8 2on 2𝑜On
9 oe0 2𝑜On2𝑜𝑜=1𝑜
10 8 9 ax-mp 2𝑜𝑜=1𝑜
11 10 oveq2i 2𝑜𝑜2𝑜𝑜=2𝑜𝑜1𝑜
12 oe1 2𝑜On2𝑜𝑜1𝑜=2𝑜
13 8 12 ax-mp 2𝑜𝑜1𝑜=2𝑜
14 11 13 eqtri 2𝑜𝑜2𝑜𝑜=2𝑜
15 8 8 pm3.2i 2𝑜On2𝑜On
16 oecl 2𝑜On2𝑜On2𝑜𝑜2𝑜On
17 oe0 2𝑜𝑜2𝑜On2𝑜𝑜2𝑜𝑜=1𝑜
18 15 16 17 mp2b 2𝑜𝑜2𝑜𝑜=1𝑜
19 14 18 eqeq12i 2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜2𝑜=1𝑜
20 19 notbii ¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜¬2𝑜=1𝑜
21 6 7 20 3bitr4i 1𝑜2𝑜¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜
22 5 21 sylib 1𝑜2𝑜¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜
23 4 22 ax-mp ¬2𝑜𝑜2𝑜𝑜=2𝑜𝑜2𝑜𝑜