Metamath Proof Explorer


Theorem oenassex

Description: Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oenassex ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ )

Proof

Step Hyp Ref Expression
1 1oex 1o ∈ V
2 1 prid2 1o ∈ { ∅ , 1o }
3 df2o3 2o = { ∅ , 1o }
4 2 3 eleqtrri 1o ∈ 2o
5 elneq ( 1o ∈ 2o → 1o ≠ 2o )
6 df-ne ( 2o ≠ 1o ↔ ¬ 2o = 1o )
7 necom ( 1o ≠ 2o ↔ 2o ≠ 1o )
8 2on 2o ∈ On
9 oe0 ( 2o ∈ On → ( 2oo ∅ ) = 1o )
10 8 9 ax-mp ( 2oo ∅ ) = 1o
11 10 oveq2i ( 2oo ( 2oo ∅ ) ) = ( 2oo 1o )
12 oe1 ( 2o ∈ On → ( 2oo 1o ) = 2o )
13 8 12 ax-mp ( 2oo 1o ) = 2o
14 11 13 eqtri ( 2oo ( 2oo ∅ ) ) = 2o
15 8 8 pm3.2i ( 2o ∈ On ∧ 2o ∈ On )
16 oecl ( ( 2o ∈ On ∧ 2o ∈ On ) → ( 2oo 2o ) ∈ On )
17 oe0 ( ( 2oo 2o ) ∈ On → ( ( 2oo 2o ) ↑o ∅ ) = 1o )
18 15 16 17 mp2b ( ( 2oo 2o ) ↑o ∅ ) = 1o
19 14 18 eqeq12i ( ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) ↔ 2o = 1o )
20 19 notbii ( ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) ↔ ¬ 2o = 1o )
21 6 7 20 3bitr4i ( 1o ≠ 2o ↔ ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) )
22 5 21 sylib ( 1o ∈ 2o → ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) )
23 4 22 ax-mp ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ )