| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 2 | 1 | prid2 | ⊢ 1o  ∈  { ∅ ,  1o } | 
						
							| 3 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 4 | 2 3 | eleqtrri | ⊢ 1o  ∈  2o | 
						
							| 5 |  | elneq | ⊢ ( 1o  ∈  2o  →  1o  ≠  2o ) | 
						
							| 6 |  | df-ne | ⊢ ( 2o  ≠  1o  ↔  ¬  2o  =  1o ) | 
						
							| 7 |  | necom | ⊢ ( 1o  ≠  2o  ↔  2o  ≠  1o ) | 
						
							| 8 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 9 |  | oe0 | ⊢ ( 2o  ∈  On  →  ( 2o  ↑o  ∅ )  =  1o ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( 2o  ↑o  ∅ )  =  1o | 
						
							| 11 | 10 | oveq2i | ⊢ ( 2o  ↑o  ( 2o  ↑o  ∅ ) )  =  ( 2o  ↑o  1o ) | 
						
							| 12 |  | oe1 | ⊢ ( 2o  ∈  On  →  ( 2o  ↑o  1o )  =  2o ) | 
						
							| 13 | 8 12 | ax-mp | ⊢ ( 2o  ↑o  1o )  =  2o | 
						
							| 14 | 11 13 | eqtri | ⊢ ( 2o  ↑o  ( 2o  ↑o  ∅ ) )  =  2o | 
						
							| 15 | 8 8 | pm3.2i | ⊢ ( 2o  ∈  On  ∧  2o  ∈  On ) | 
						
							| 16 |  | oecl | ⊢ ( ( 2o  ∈  On  ∧  2o  ∈  On )  →  ( 2o  ↑o  2o )  ∈  On ) | 
						
							| 17 |  | oe0 | ⊢ ( ( 2o  ↑o  2o )  ∈  On  →  ( ( 2o  ↑o  2o )  ↑o  ∅ )  =  1o ) | 
						
							| 18 | 15 16 17 | mp2b | ⊢ ( ( 2o  ↑o  2o )  ↑o  ∅ )  =  1o | 
						
							| 19 | 14 18 | eqeq12i | ⊢ ( ( 2o  ↑o  ( 2o  ↑o  ∅ ) )  =  ( ( 2o  ↑o  2o )  ↑o  ∅ )  ↔  2o  =  1o ) | 
						
							| 20 | 19 | notbii | ⊢ ( ¬  ( 2o  ↑o  ( 2o  ↑o  ∅ ) )  =  ( ( 2o  ↑o  2o )  ↑o  ∅ )  ↔  ¬  2o  =  1o ) | 
						
							| 21 | 6 7 20 | 3bitr4i | ⊢ ( 1o  ≠  2o  ↔  ¬  ( 2o  ↑o  ( 2o  ↑o  ∅ ) )  =  ( ( 2o  ↑o  2o )  ↑o  ∅ ) ) | 
						
							| 22 | 5 21 | sylib | ⊢ ( 1o  ∈  2o  →  ¬  ( 2o  ↑o  ( 2o  ↑o  ∅ ) )  =  ( ( 2o  ↑o  2o )  ↑o  ∅ ) ) | 
						
							| 23 | 4 22 | ax-mp | ⊢ ¬  ( 2o  ↑o  ( 2o  ↑o  ∅ ) )  =  ( ( 2o  ↑o  2o )  ↑o  ∅ ) |