Step |
Hyp |
Ref |
Expression |
1 |
|
1oex |
⊢ 1o ∈ V |
2 |
1
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
3 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
4 |
2 3
|
eleqtrri |
⊢ 1o ∈ 2o |
5 |
|
elneq |
⊢ ( 1o ∈ 2o → 1o ≠ 2o ) |
6 |
|
df-ne |
⊢ ( 2o ≠ 1o ↔ ¬ 2o = 1o ) |
7 |
|
necom |
⊢ ( 1o ≠ 2o ↔ 2o ≠ 1o ) |
8 |
|
2on |
⊢ 2o ∈ On |
9 |
|
oe0 |
⊢ ( 2o ∈ On → ( 2o ↑o ∅ ) = 1o ) |
10 |
8 9
|
ax-mp |
⊢ ( 2o ↑o ∅ ) = 1o |
11 |
10
|
oveq2i |
⊢ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( 2o ↑o 1o ) |
12 |
|
oe1 |
⊢ ( 2o ∈ On → ( 2o ↑o 1o ) = 2o ) |
13 |
8 12
|
ax-mp |
⊢ ( 2o ↑o 1o ) = 2o |
14 |
11 13
|
eqtri |
⊢ ( 2o ↑o ( 2o ↑o ∅ ) ) = 2o |
15 |
8 8
|
pm3.2i |
⊢ ( 2o ∈ On ∧ 2o ∈ On ) |
16 |
|
oecl |
⊢ ( ( 2o ∈ On ∧ 2o ∈ On ) → ( 2o ↑o 2o ) ∈ On ) |
17 |
|
oe0 |
⊢ ( ( 2o ↑o 2o ) ∈ On → ( ( 2o ↑o 2o ) ↑o ∅ ) = 1o ) |
18 |
15 16 17
|
mp2b |
⊢ ( ( 2o ↑o 2o ) ↑o ∅ ) = 1o |
19 |
14 18
|
eqeq12i |
⊢ ( ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) ↔ 2o = 1o ) |
20 |
19
|
notbii |
⊢ ( ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) ↔ ¬ 2o = 1o ) |
21 |
6 7 20
|
3bitr4i |
⊢ ( 1o ≠ 2o ↔ ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) ) |
22 |
5 21
|
sylib |
⊢ ( 1o ∈ 2o → ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) ) |
23 |
4 22
|
ax-mp |
⊢ ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) |