Step |
Hyp |
Ref |
Expression |
1 |
|
oenassex |
⊢ ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) |
2 |
|
2on |
⊢ 2o ∈ On |
3 |
|
0elon |
⊢ ∅ ∈ On |
4 |
|
oveq2 |
⊢ ( 𝑐 = ∅ → ( 2o ↑o 𝑐 ) = ( 2o ↑o ∅ ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑐 = ∅ → ( 2o ↑o ( 2o ↑o 𝑐 ) ) = ( 2o ↑o ( 2o ↑o ∅ ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑐 = ∅ → ( ( 2o ↑o 2o ) ↑o 𝑐 ) = ( ( 2o ↑o 2o ) ↑o ∅ ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑐 = ∅ → ( ( 2o ↑o ( 2o ↑o 𝑐 ) ) = ( ( 2o ↑o 2o ) ↑o 𝑐 ) ↔ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) ) ) |
8 |
7
|
notbid |
⊢ ( 𝑐 = ∅ → ( ¬ ( 2o ↑o ( 2o ↑o 𝑐 ) ) = ( ( 2o ↑o 2o ) ↑o 𝑐 ) ↔ ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) ) ) |
9 |
8
|
rspcev |
⊢ ( ( ∅ ∈ On ∧ ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) ) → ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 2o ↑o 𝑐 ) ) = ( ( 2o ↑o 2o ) ↑o 𝑐 ) ) |
10 |
3 9
|
mpan |
⊢ ( ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) → ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 2o ↑o 𝑐 ) ) = ( ( 2o ↑o 2o ) ↑o 𝑐 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑏 = 2o → ( 𝑏 ↑o 𝑐 ) = ( 2o ↑o 𝑐 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑏 = 2o → ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( 2o ↑o ( 2o ↑o 𝑐 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑏 = 2o → ( 2o ↑o 𝑏 ) = ( 2o ↑o 2o ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝑏 = 2o → ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) = ( ( 2o ↑o 2o ) ↑o 𝑐 ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑏 = 2o → ( ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ↔ ( 2o ↑o ( 2o ↑o 𝑐 ) ) = ( ( 2o ↑o 2o ) ↑o 𝑐 ) ) ) |
16 |
15
|
notbid |
⊢ ( 𝑏 = 2o → ( ¬ ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ↔ ¬ ( 2o ↑o ( 2o ↑o 𝑐 ) ) = ( ( 2o ↑o 2o ) ↑o 𝑐 ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑏 = 2o → ( ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ↔ ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 2o ↑o 𝑐 ) ) = ( ( 2o ↑o 2o ) ↑o 𝑐 ) ) ) |
18 |
17
|
rspcev |
⊢ ( ( 2o ∈ On ∧ ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 2o ↑o 𝑐 ) ) = ( ( 2o ↑o 2o ) ↑o 𝑐 ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ) |
19 |
2 10 18
|
sylancr |
⊢ ( ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑎 = 2o → ( 𝑎 ↑o ( 𝑏 ↑o 𝑐 ) ) = ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) ) |
21 |
|
oveq1 |
⊢ ( 𝑎 = 2o → ( 𝑎 ↑o 𝑏 ) = ( 2o ↑o 𝑏 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑎 = 2o → ( ( 𝑎 ↑o 𝑏 ) ↑o 𝑐 ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ) |
23 |
20 22
|
eqeq12d |
⊢ ( 𝑎 = 2o → ( ( 𝑎 ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 𝑎 ↑o 𝑏 ) ↑o 𝑐 ) ↔ ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ) ) |
24 |
23
|
notbid |
⊢ ( 𝑎 = 2o → ( ¬ ( 𝑎 ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 𝑎 ↑o 𝑏 ) ↑o 𝑐 ) ↔ ¬ ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑎 = 2o → ( ∃ 𝑐 ∈ On ¬ ( 𝑎 ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 𝑎 ↑o 𝑏 ) ↑o 𝑐 ) ↔ ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑎 = 2o → ( ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 𝑎 ↑o 𝑏 ) ↑o 𝑐 ) ↔ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ) ) |
27 |
26
|
rspcev |
⊢ ( ( 2o ∈ On ∧ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 2o ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 2o ↑o 𝑏 ) ↑o 𝑐 ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 𝑎 ↑o 𝑏 ) ↑o 𝑐 ) ) |
28 |
2 19 27
|
sylancr |
⊢ ( ¬ ( 2o ↑o ( 2o ↑o ∅ ) ) = ( ( 2o ↑o 2o ) ↑o ∅ ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 𝑎 ↑o 𝑏 ) ↑o 𝑐 ) ) |
29 |
1 28
|
ax-mp |
⊢ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ↑o ( 𝑏 ↑o 𝑐 ) ) = ( ( 𝑎 ↑o 𝑏 ) ↑o 𝑐 ) |