Metamath Proof Explorer


Theorem oenass

Description: Ordinal exponentiation is not associative. Remark 4.6 of Schloeder p. 14. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oenass 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎o ( 𝑏o 𝑐 ) ) = ( ( 𝑎o 𝑏 ) ↑o 𝑐 )

Proof

Step Hyp Ref Expression
1 oenassex ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ )
2 2on 2o ∈ On
3 0elon ∅ ∈ On
4 oveq2 ( 𝑐 = ∅ → ( 2oo 𝑐 ) = ( 2oo ∅ ) )
5 4 oveq2d ( 𝑐 = ∅ → ( 2oo ( 2oo 𝑐 ) ) = ( 2oo ( 2oo ∅ ) ) )
6 oveq2 ( 𝑐 = ∅ → ( ( 2oo 2o ) ↑o 𝑐 ) = ( ( 2oo 2o ) ↑o ∅ ) )
7 5 6 eqeq12d ( 𝑐 = ∅ → ( ( 2oo ( 2oo 𝑐 ) ) = ( ( 2oo 2o ) ↑o 𝑐 ) ↔ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) ) )
8 7 notbid ( 𝑐 = ∅ → ( ¬ ( 2oo ( 2oo 𝑐 ) ) = ( ( 2oo 2o ) ↑o 𝑐 ) ↔ ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) ) )
9 8 rspcev ( ( ∅ ∈ On ∧ ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) ) → ∃ 𝑐 ∈ On ¬ ( 2oo ( 2oo 𝑐 ) ) = ( ( 2oo 2o ) ↑o 𝑐 ) )
10 3 9 mpan ( ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) → ∃ 𝑐 ∈ On ¬ ( 2oo ( 2oo 𝑐 ) ) = ( ( 2oo 2o ) ↑o 𝑐 ) )
11 oveq1 ( 𝑏 = 2o → ( 𝑏o 𝑐 ) = ( 2oo 𝑐 ) )
12 11 oveq2d ( 𝑏 = 2o → ( 2oo ( 𝑏o 𝑐 ) ) = ( 2oo ( 2oo 𝑐 ) ) )
13 oveq2 ( 𝑏 = 2o → ( 2oo 𝑏 ) = ( 2oo 2o ) )
14 13 oveq1d ( 𝑏 = 2o → ( ( 2oo 𝑏 ) ↑o 𝑐 ) = ( ( 2oo 2o ) ↑o 𝑐 ) )
15 12 14 eqeq12d ( 𝑏 = 2o → ( ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) ↔ ( 2oo ( 2oo 𝑐 ) ) = ( ( 2oo 2o ) ↑o 𝑐 ) ) )
16 15 notbid ( 𝑏 = 2o → ( ¬ ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) ↔ ¬ ( 2oo ( 2oo 𝑐 ) ) = ( ( 2oo 2o ) ↑o 𝑐 ) ) )
17 16 rexbidv ( 𝑏 = 2o → ( ∃ 𝑐 ∈ On ¬ ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) ↔ ∃ 𝑐 ∈ On ¬ ( 2oo ( 2oo 𝑐 ) ) = ( ( 2oo 2o ) ↑o 𝑐 ) ) )
18 17 rspcev ( ( 2o ∈ On ∧ ∃ 𝑐 ∈ On ¬ ( 2oo ( 2oo 𝑐 ) ) = ( ( 2oo 2o ) ↑o 𝑐 ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) )
19 2 10 18 sylancr ( ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) )
20 oveq1 ( 𝑎 = 2o → ( 𝑎o ( 𝑏o 𝑐 ) ) = ( 2oo ( 𝑏o 𝑐 ) ) )
21 oveq1 ( 𝑎 = 2o → ( 𝑎o 𝑏 ) = ( 2oo 𝑏 ) )
22 21 oveq1d ( 𝑎 = 2o → ( ( 𝑎o 𝑏 ) ↑o 𝑐 ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) )
23 20 22 eqeq12d ( 𝑎 = 2o → ( ( 𝑎o ( 𝑏o 𝑐 ) ) = ( ( 𝑎o 𝑏 ) ↑o 𝑐 ) ↔ ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) ) )
24 23 notbid ( 𝑎 = 2o → ( ¬ ( 𝑎o ( 𝑏o 𝑐 ) ) = ( ( 𝑎o 𝑏 ) ↑o 𝑐 ) ↔ ¬ ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) ) )
25 24 rexbidv ( 𝑎 = 2o → ( ∃ 𝑐 ∈ On ¬ ( 𝑎o ( 𝑏o 𝑐 ) ) = ( ( 𝑎o 𝑏 ) ↑o 𝑐 ) ↔ ∃ 𝑐 ∈ On ¬ ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) ) )
26 25 rexbidv ( 𝑎 = 2o → ( ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎o ( 𝑏o 𝑐 ) ) = ( ( 𝑎o 𝑏 ) ↑o 𝑐 ) ↔ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) ) )
27 26 rspcev ( ( 2o ∈ On ∧ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 2oo ( 𝑏o 𝑐 ) ) = ( ( 2oo 𝑏 ) ↑o 𝑐 ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎o ( 𝑏o 𝑐 ) ) = ( ( 𝑎o 𝑏 ) ↑o 𝑐 ) )
28 2 19 27 sylancr ( ¬ ( 2oo ( 2oo ∅ ) ) = ( ( 2oo 2o ) ↑o ∅ ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎o ( 𝑏o 𝑐 ) ) = ( ( 𝑎o 𝑏 ) ↑o 𝑐 ) )
29 1 28 ax-mp 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎o ( 𝑏o 𝑐 ) ) = ( ( 𝑎o 𝑏 ) ↑o 𝑐 )