| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oenassex |
|- -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) |
| 2 |
|
2on |
|- 2o e. On |
| 3 |
|
0elon |
|- (/) e. On |
| 4 |
|
oveq2 |
|- ( c = (/) -> ( 2o ^o c ) = ( 2o ^o (/) ) ) |
| 5 |
4
|
oveq2d |
|- ( c = (/) -> ( 2o ^o ( 2o ^o c ) ) = ( 2o ^o ( 2o ^o (/) ) ) ) |
| 6 |
|
oveq2 |
|- ( c = (/) -> ( ( 2o ^o 2o ) ^o c ) = ( ( 2o ^o 2o ) ^o (/) ) ) |
| 7 |
5 6
|
eqeq12d |
|- ( c = (/) -> ( ( 2o ^o ( 2o ^o c ) ) = ( ( 2o ^o 2o ) ^o c ) <-> ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) ) ) |
| 8 |
7
|
notbid |
|- ( c = (/) -> ( -. ( 2o ^o ( 2o ^o c ) ) = ( ( 2o ^o 2o ) ^o c ) <-> -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) ) ) |
| 9 |
8
|
rspcev |
|- ( ( (/) e. On /\ -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) ) -> E. c e. On -. ( 2o ^o ( 2o ^o c ) ) = ( ( 2o ^o 2o ) ^o c ) ) |
| 10 |
3 9
|
mpan |
|- ( -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) -> E. c e. On -. ( 2o ^o ( 2o ^o c ) ) = ( ( 2o ^o 2o ) ^o c ) ) |
| 11 |
|
oveq1 |
|- ( b = 2o -> ( b ^o c ) = ( 2o ^o c ) ) |
| 12 |
11
|
oveq2d |
|- ( b = 2o -> ( 2o ^o ( b ^o c ) ) = ( 2o ^o ( 2o ^o c ) ) ) |
| 13 |
|
oveq2 |
|- ( b = 2o -> ( 2o ^o b ) = ( 2o ^o 2o ) ) |
| 14 |
13
|
oveq1d |
|- ( b = 2o -> ( ( 2o ^o b ) ^o c ) = ( ( 2o ^o 2o ) ^o c ) ) |
| 15 |
12 14
|
eqeq12d |
|- ( b = 2o -> ( ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) <-> ( 2o ^o ( 2o ^o c ) ) = ( ( 2o ^o 2o ) ^o c ) ) ) |
| 16 |
15
|
notbid |
|- ( b = 2o -> ( -. ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) <-> -. ( 2o ^o ( 2o ^o c ) ) = ( ( 2o ^o 2o ) ^o c ) ) ) |
| 17 |
16
|
rexbidv |
|- ( b = 2o -> ( E. c e. On -. ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) <-> E. c e. On -. ( 2o ^o ( 2o ^o c ) ) = ( ( 2o ^o 2o ) ^o c ) ) ) |
| 18 |
17
|
rspcev |
|- ( ( 2o e. On /\ E. c e. On -. ( 2o ^o ( 2o ^o c ) ) = ( ( 2o ^o 2o ) ^o c ) ) -> E. b e. On E. c e. On -. ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) ) |
| 19 |
2 10 18
|
sylancr |
|- ( -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) -> E. b e. On E. c e. On -. ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) ) |
| 20 |
|
oveq1 |
|- ( a = 2o -> ( a ^o ( b ^o c ) ) = ( 2o ^o ( b ^o c ) ) ) |
| 21 |
|
oveq1 |
|- ( a = 2o -> ( a ^o b ) = ( 2o ^o b ) ) |
| 22 |
21
|
oveq1d |
|- ( a = 2o -> ( ( a ^o b ) ^o c ) = ( ( 2o ^o b ) ^o c ) ) |
| 23 |
20 22
|
eqeq12d |
|- ( a = 2o -> ( ( a ^o ( b ^o c ) ) = ( ( a ^o b ) ^o c ) <-> ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) ) ) |
| 24 |
23
|
notbid |
|- ( a = 2o -> ( -. ( a ^o ( b ^o c ) ) = ( ( a ^o b ) ^o c ) <-> -. ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) ) ) |
| 25 |
24
|
rexbidv |
|- ( a = 2o -> ( E. c e. On -. ( a ^o ( b ^o c ) ) = ( ( a ^o b ) ^o c ) <-> E. c e. On -. ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) ) ) |
| 26 |
25
|
rexbidv |
|- ( a = 2o -> ( E. b e. On E. c e. On -. ( a ^o ( b ^o c ) ) = ( ( a ^o b ) ^o c ) <-> E. b e. On E. c e. On -. ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) ) ) |
| 27 |
26
|
rspcev |
|- ( ( 2o e. On /\ E. b e. On E. c e. On -. ( 2o ^o ( b ^o c ) ) = ( ( 2o ^o b ) ^o c ) ) -> E. a e. On E. b e. On E. c e. On -. ( a ^o ( b ^o c ) ) = ( ( a ^o b ) ^o c ) ) |
| 28 |
2 19 27
|
sylancr |
|- ( -. ( 2o ^o ( 2o ^o (/) ) ) = ( ( 2o ^o 2o ) ^o (/) ) -> E. a e. On E. b e. On E. c e. On -. ( a ^o ( b ^o c ) ) = ( ( a ^o b ) ^o c ) ) |
| 29 |
1 28
|
ax-mp |
|- E. a e. On E. b e. On E. c e. On -. ( a ^o ( b ^o c ) ) = ( ( a ^o b ) ^o c ) |