Metamath Proof Explorer


Theorem cantnftermord

Description: For terms of the form of a power of omega times a non-zero natural number, ordering of the exponents implies ordering of the terms. Lemma 5.1 of Schloeder p. 15. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion cantnftermord ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) → ( 𝐴𝐵 → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 simplll ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → 𝐴 ∈ On )
2 onsuc ( 𝐴 ∈ On → suc 𝐴 ∈ On )
3 1 2 syl ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → suc 𝐴 ∈ On )
4 simpllr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → 𝐵 ∈ On )
5 omelon ω ∈ On
6 1onn 1o ∈ ω
7 ondif2 ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) )
8 5 6 7 mpbir2an ω ∈ ( On ∖ 2o )
9 8 a1i ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ω ∈ ( On ∖ 2o ) )
10 onsucss ( 𝐵 ∈ On → ( 𝐴𝐵 → suc 𝐴𝐵 ) )
11 10 ad2antlr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) → ( 𝐴𝐵 → suc 𝐴𝐵 ) )
12 11 imp ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → suc 𝐴𝐵 )
13 oeword ( ( suc 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( suc 𝐴𝐵 ↔ ( ω ↑o suc 𝐴 ) ⊆ ( ω ↑o 𝐵 ) ) )
14 13 biimpa ( ( ( suc 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) ∧ suc 𝐴𝐵 ) → ( ω ↑o suc 𝐴 ) ⊆ ( ω ↑o 𝐵 ) )
15 3 4 9 12 14 syl31anc ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ω ↑o suc 𝐴 ) ⊆ ( ω ↑o 𝐵 ) )
16 5 a1i ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ω ∈ On )
17 oecl ( ( ω ∈ On ∧ 𝐵 ∈ On ) → ( ω ↑o 𝐵 ) ∈ On )
18 16 17 sylancom ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ω ↑o 𝐵 ) ∈ On )
19 omsson ω ⊆ On
20 ssdif ( ω ⊆ On → ( ω ∖ 1o ) ⊆ ( On ∖ 1o ) )
21 19 20 ax-mp ( ω ∖ 1o ) ⊆ ( On ∖ 1o )
22 21 sseli ( 𝐷 ∈ ( ω ∖ 1o ) → 𝐷 ∈ ( On ∖ 1o ) )
23 ondif1 ( 𝐷 ∈ ( On ∖ 1o ) ↔ ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) )
24 22 23 sylib ( 𝐷 ∈ ( ω ∖ 1o ) → ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) )
25 24 adantl ( ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) → ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) )
26 18 25 anim12i ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) → ( ( ω ↑o 𝐵 ) ∈ On ∧ ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) ) )
27 26 adantr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ( ω ↑o 𝐵 ) ∈ On ∧ ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) ) )
28 anass ( ( ( ( ω ↑o 𝐵 ) ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ 𝐷 ) ↔ ( ( ω ↑o 𝐵 ) ∈ On ∧ ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) ) )
29 27 28 sylibr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ( ( ω ↑o 𝐵 ) ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ 𝐷 ) )
30 omword1 ( ( ( ( ω ↑o 𝐵 ) ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ 𝐷 ) → ( ω ↑o 𝐵 ) ⊆ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) )
31 29 30 syl ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ω ↑o 𝐵 ) ⊆ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) )
32 15 31 sstrd ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ω ↑o suc 𝐴 ) ⊆ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) )
33 5 a1i ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ω ∈ On )
34 1 5 jctil ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ω ∈ On ∧ 𝐴 ∈ On ) )
35 oecl ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ( ω ↑o 𝐴 ) ∈ On )
36 34 35 syl ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ω ↑o 𝐴 ) ∈ On )
37 peano1 ∅ ∈ ω
38 oen0 ( ( ( ω ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐴 ) )
39 34 37 38 sylancl ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ∅ ∈ ( ω ↑o 𝐴 ) )
40 simplrl ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → 𝐶 ∈ ( ω ∖ 1o ) )
41 40 eldifad ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → 𝐶 ∈ ω )
42 omordi ( ( ( ω ∈ On ∧ ( ω ↑o 𝐴 ) ∈ On ) ∧ ∅ ∈ ( ω ↑o 𝐴 ) ) → ( 𝐶 ∈ ω → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐴 ) ·o ω ) ) )
43 42 imp ( ( ( ( ω ∈ On ∧ ( ω ↑o 𝐴 ) ∈ On ) ∧ ∅ ∈ ( ω ↑o 𝐴 ) ) ∧ 𝐶 ∈ ω ) → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐴 ) ·o ω ) )
44 33 36 39 41 43 syl1111anc ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐴 ) ·o ω ) )
45 oesuc ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ( ω ↑o suc 𝐴 ) = ( ( ω ↑o 𝐴 ) ·o ω ) )
46 34 45 syl ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ω ↑o suc 𝐴 ) = ( ( ω ↑o 𝐴 ) ·o ω ) )
47 44 46 eleqtrrd ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ω ↑o suc 𝐴 ) )
48 32 47 sseldd ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴𝐵 ) → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) )
49 48 ex ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) → ( 𝐴𝐵 → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) ) )