Step |
Hyp |
Ref |
Expression |
1 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
2 |
|
onsuc |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) |
3 |
1 2
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → suc 𝐴 ∈ On ) |
4 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ∈ On ) |
5 |
|
omelon |
⊢ ω ∈ On |
6 |
|
1onn |
⊢ 1o ∈ ω |
7 |
|
ondif2 |
⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) |
8 |
5 6 7
|
mpbir2an |
⊢ ω ∈ ( On ∖ 2o ) |
9 |
8
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ω ∈ ( On ∖ 2o ) ) |
10 |
|
onsucss |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
12 |
11
|
imp |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → suc 𝐴 ⊆ 𝐵 ) |
13 |
|
oeword |
⊢ ( ( suc 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( suc 𝐴 ⊆ 𝐵 ↔ ( ω ↑o suc 𝐴 ) ⊆ ( ω ↑o 𝐵 ) ) ) |
14 |
13
|
biimpa |
⊢ ( ( ( suc 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) ∧ suc 𝐴 ⊆ 𝐵 ) → ( ω ↑o suc 𝐴 ) ⊆ ( ω ↑o 𝐵 ) ) |
15 |
3 4 9 12 14
|
syl31anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ω ↑o suc 𝐴 ) ⊆ ( ω ↑o 𝐵 ) ) |
16 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ω ∈ On ) |
17 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝐵 ∈ On ) → ( ω ↑o 𝐵 ) ∈ On ) |
18 |
16 17
|
sylancom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ω ↑o 𝐵 ) ∈ On ) |
19 |
|
omsson |
⊢ ω ⊆ On |
20 |
|
ssdif |
⊢ ( ω ⊆ On → ( ω ∖ 1o ) ⊆ ( On ∖ 1o ) ) |
21 |
19 20
|
ax-mp |
⊢ ( ω ∖ 1o ) ⊆ ( On ∖ 1o ) |
22 |
21
|
sseli |
⊢ ( 𝐷 ∈ ( ω ∖ 1o ) → 𝐷 ∈ ( On ∖ 1o ) ) |
23 |
|
ondif1 |
⊢ ( 𝐷 ∈ ( On ∖ 1o ) ↔ ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) ) |
24 |
22 23
|
sylib |
⊢ ( 𝐷 ∈ ( ω ∖ 1o ) → ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) → ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) ) |
26 |
18 25
|
anim12i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) → ( ( ω ↑o 𝐵 ) ∈ On ∧ ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) ) ) |
27 |
26
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( ω ↑o 𝐵 ) ∈ On ∧ ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) ) ) |
28 |
|
anass |
⊢ ( ( ( ( ω ↑o 𝐵 ) ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ 𝐷 ) ↔ ( ( ω ↑o 𝐵 ) ∈ On ∧ ( 𝐷 ∈ On ∧ ∅ ∈ 𝐷 ) ) ) |
29 |
27 28
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( ( ω ↑o 𝐵 ) ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ 𝐷 ) ) |
30 |
|
omword1 |
⊢ ( ( ( ( ω ↑o 𝐵 ) ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ 𝐷 ) → ( ω ↑o 𝐵 ) ⊆ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ω ↑o 𝐵 ) ⊆ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) ) |
32 |
15 31
|
sstrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ω ↑o suc 𝐴 ) ⊆ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) ) |
33 |
5
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ω ∈ On ) |
34 |
1 5
|
jctil |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ω ∈ On ∧ 𝐴 ∈ On ) ) |
35 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ( ω ↑o 𝐴 ) ∈ On ) |
36 |
34 35
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ω ↑o 𝐴 ) ∈ On ) |
37 |
|
peano1 |
⊢ ∅ ∈ ω |
38 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐴 ) ) |
39 |
34 37 38
|
sylancl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ∅ ∈ ( ω ↑o 𝐴 ) ) |
40 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ∈ ( ω ∖ 1o ) ) |
41 |
40
|
eldifad |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ∈ ω ) |
42 |
|
omordi |
⊢ ( ( ( ω ∈ On ∧ ( ω ↑o 𝐴 ) ∈ On ) ∧ ∅ ∈ ( ω ↑o 𝐴 ) ) → ( 𝐶 ∈ ω → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐴 ) ·o ω ) ) ) |
43 |
42
|
imp |
⊢ ( ( ( ( ω ∈ On ∧ ( ω ↑o 𝐴 ) ∈ On ) ∧ ∅ ∈ ( ω ↑o 𝐴 ) ) ∧ 𝐶 ∈ ω ) → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐴 ) ·o ω ) ) |
44 |
33 36 39 41 43
|
syl1111anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐴 ) ·o ω ) ) |
45 |
|
oesuc |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ( ω ↑o suc 𝐴 ) = ( ( ω ↑o 𝐴 ) ·o ω ) ) |
46 |
34 45
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ω ↑o suc 𝐴 ) = ( ( ω ↑o 𝐴 ) ·o ω ) ) |
47 |
44 46
|
eleqtrrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ω ↑o suc 𝐴 ) ) |
48 |
32 47
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) ) |
49 |
48
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ ( ω ∖ 1o ) ∧ 𝐷 ∈ ( ω ∖ 1o ) ) ) → ( 𝐴 ∈ 𝐵 → ( ( ω ↑o 𝐴 ) ·o 𝐶 ) ∈ ( ( ω ↑o 𝐵 ) ·o 𝐷 ) ) ) |