| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfub.0 | ⊢ ( 𝜑  →  𝑋  ∈  On ) | 
						
							| 2 |  | cantnfub.n | ⊢ ( 𝜑  →  𝑁  ∈  ω ) | 
						
							| 3 |  | cantnfub.a | ⊢ ( 𝜑  →  𝐴 : 𝑁 –1-1→ 𝑋 ) | 
						
							| 4 |  | cantnfub.m | ⊢ ( 𝜑  →  𝑀 : 𝑁 ⟶ ω ) | 
						
							| 5 |  | cantnfub.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  if ( 𝑥  ∈  ran  𝐴 ,  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑥 ) ) ,  ∅ ) ) | 
						
							| 6 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑥  ∈  ran  𝐴 )  →  𝑀 : 𝑁 ⟶ ω ) | 
						
							| 7 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑥  ∈  ran  𝐴 )  →  𝐴 : 𝑁 –1-1→ 𝑋 ) | 
						
							| 8 |  | f1f1orn | ⊢ ( 𝐴 : 𝑁 –1-1→ 𝑋  →  𝐴 : 𝑁 –1-1-onto→ ran  𝐴 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑥  ∈  ran  𝐴 )  →  𝐴 : 𝑁 –1-1-onto→ ran  𝐴 ) | 
						
							| 10 |  | f1ocnvdm | ⊢ ( ( 𝐴 : 𝑁 –1-1-onto→ ran  𝐴  ∧  𝑥  ∈  ran  𝐴 )  →  ( ◡ 𝐴 ‘ 𝑥 )  ∈  𝑁 ) | 
						
							| 11 | 9 10 | sylancom | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑥  ∈  ran  𝐴 )  →  ( ◡ 𝐴 ‘ 𝑥 )  ∈  𝑁 ) | 
						
							| 12 | 6 11 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑥  ∈  ran  𝐴 )  →  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑥 ) )  ∈  ω ) | 
						
							| 13 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  ¬  𝑥  ∈  ran  𝐴 )  →  ∅  ∈  ω ) | 
						
							| 15 | 12 14 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  if ( 𝑥  ∈  ran  𝐴 ,  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑥 ) ) ,  ∅ )  ∈  ω ) | 
						
							| 16 | 15 5 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ω ) | 
						
							| 17 |  | f1fn | ⊢ ( 𝐴 : 𝑁 –1-1→ 𝑋  →  𝐴  Fn  𝑁 ) | 
						
							| 18 | 3 17 | syl | ⊢ ( 𝜑  →  𝐴  Fn  𝑁 ) | 
						
							| 19 |  | nnon | ⊢ ( 𝑁  ∈  ω  →  𝑁  ∈  On ) | 
						
							| 20 |  | onfin | ⊢ ( 𝑁  ∈  On  →  ( 𝑁  ∈  Fin  ↔  𝑁  ∈  ω ) ) | 
						
							| 21 | 2 19 20 | 3syl | ⊢ ( 𝜑  →  ( 𝑁  ∈  Fin  ↔  𝑁  ∈  ω ) ) | 
						
							| 22 | 2 21 | mpbird | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 23 | 18 22 | jca | ⊢ ( 𝜑  →  ( 𝐴  Fn  𝑁  ∧  𝑁  ∈  Fin ) ) | 
						
							| 24 |  | fnfi | ⊢ ( ( 𝐴  Fn  𝑁  ∧  𝑁  ∈  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 25 |  | rnfi | ⊢ ( 𝐴  ∈  Fin  →  ran  𝐴  ∈  Fin ) | 
						
							| 26 | 23 24 25 | 3syl | ⊢ ( 𝜑  →  ran  𝐴  ∈  Fin ) | 
						
							| 27 |  | eldifi | ⊢ ( 𝑦  ∈  ( 𝑋  ∖  ran  𝐴 )  →  𝑦  ∈  𝑋 ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋  ∖  ran  𝐴 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 29 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ran  𝐴  ↔  𝑦  ∈  ran  𝐴 ) ) | 
						
							| 30 |  | 2fveq3 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑥 ) )  =  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑦 ) ) ) | 
						
							| 31 | 29 30 | ifbieq1d | ⊢ ( 𝑥  =  𝑦  →  if ( 𝑥  ∈  ran  𝐴 ,  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑥 ) ) ,  ∅ )  =  if ( 𝑦  ∈  ran  𝐴 ,  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑦 ) ) ,  ∅ ) ) | 
						
							| 32 |  | fvex | ⊢ ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑦 ) )  ∈  V | 
						
							| 33 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 34 | 32 33 | ifex | ⊢ if ( 𝑦  ∈  ran  𝐴 ,  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑦 ) ) ,  ∅ )  ∈  V | 
						
							| 35 | 31 5 34 | fvmpt | ⊢ ( 𝑦  ∈  𝑋  →  ( 𝐹 ‘ 𝑦 )  =  if ( 𝑦  ∈  ran  𝐴 ,  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑦 ) ) ,  ∅ ) ) | 
						
							| 36 | 28 35 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋  ∖  ran  𝐴 ) )  →  ( 𝐹 ‘ 𝑦 )  =  if ( 𝑦  ∈  ran  𝐴 ,  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑦 ) ) ,  ∅ ) ) | 
						
							| 37 |  | eldifn | ⊢ ( 𝑦  ∈  ( 𝑋  ∖  ran  𝐴 )  →  ¬  𝑦  ∈  ran  𝐴 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋  ∖  ran  𝐴 ) )  →  ¬  𝑦  ∈  ran  𝐴 ) | 
						
							| 39 | 38 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋  ∖  ran  𝐴 ) )  →  if ( 𝑦  ∈  ran  𝐴 ,  ( 𝑀 ‘ ( ◡ 𝐴 ‘ 𝑦 ) ) ,  ∅ )  =  ∅ ) | 
						
							| 40 | 36 39 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋  ∖  ran  𝐴 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ∅ ) | 
						
							| 41 | 16 40 | suppss | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ⊆  ran  𝐴 ) | 
						
							| 42 | 26 41 | ssfid | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ∈  Fin ) | 
						
							| 43 | 16 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 44 |  | omelon | ⊢ ω  ∈  On | 
						
							| 45 | 44 | a1i | ⊢ ( 𝜑  →  ω  ∈  On ) | 
						
							| 46 | 45 1 | elmapd | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ω  ↑m  𝑋 )  ↔  𝐹 : 𝑋 ⟶ ω ) ) | 
						
							| 47 | 16 46 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( ω  ↑m  𝑋 ) ) | 
						
							| 48 | 13 | a1i | ⊢ ( 𝜑  →  ∅  ∈  ω ) | 
						
							| 49 |  | funisfsupp | ⊢ ( ( Fun  𝐹  ∧  𝐹  ∈  ( ω  ↑m  𝑋 )  ∧  ∅  ∈  ω )  →  ( 𝐹  finSupp  ∅  ↔  ( 𝐹  supp  ∅ )  ∈  Fin ) ) | 
						
							| 50 | 43 47 48 49 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  finSupp  ∅  ↔  ( 𝐹  supp  ∅ )  ∈  Fin ) ) | 
						
							| 51 | 42 50 | mpbird | ⊢ ( 𝜑  →  𝐹  finSupp  ∅ ) | 
						
							| 52 |  | eqid | ⊢ dom  ( ω  CNF  𝑋 )  =  dom  ( ω  CNF  𝑋 ) | 
						
							| 53 | 52 45 1 | cantnfs | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( ω  CNF  𝑋 )  ↔  ( 𝐹 : 𝑋 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) ) | 
						
							| 54 | 16 51 53 | mpbir2and | ⊢ ( 𝜑  →  𝐹  ∈  dom  ( ω  CNF  𝑋 ) ) | 
						
							| 55 | 52 45 1 | cantnff | ⊢ ( 𝜑  →  ( ω  CNF  𝑋 ) : dom  ( ω  CNF  𝑋 ) ⟶ ( ω  ↑o  𝑋 ) ) | 
						
							| 56 | 55 54 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( ω  CNF  𝑋 ) ‘ 𝐹 )  ∈  ( ω  ↑o  𝑋 ) ) | 
						
							| 57 | 54 56 | jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( ω  CNF  𝑋 )  ∧  ( ( ω  CNF  𝑋 ) ‘ 𝐹 )  ∈  ( ω  ↑o  𝑋 ) ) ) |