| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfub.0 |
|
| 2 |
|
cantnfub.n |
|
| 3 |
|
cantnfub.a |
|
| 4 |
|
cantnfub.m |
|
| 5 |
|
cantnfub.f |
|
| 6 |
4
|
ad2antrr |
|
| 7 |
3
|
ad2antrr |
|
| 8 |
|
f1f1orn |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
f1ocnvdm |
|
| 11 |
9 10
|
sylancom |
|
| 12 |
6 11
|
ffvelcdmd |
|
| 13 |
|
peano1 |
|
| 14 |
13
|
a1i |
|
| 15 |
12 14
|
ifclda |
|
| 16 |
15 5
|
fmptd |
|
| 17 |
|
f1fn |
|
| 18 |
3 17
|
syl |
|
| 19 |
|
nnon |
|
| 20 |
|
onfin |
|
| 21 |
2 19 20
|
3syl |
|
| 22 |
2 21
|
mpbird |
|
| 23 |
18 22
|
jca |
|
| 24 |
|
fnfi |
|
| 25 |
|
rnfi |
|
| 26 |
23 24 25
|
3syl |
|
| 27 |
|
eldifi |
|
| 28 |
27
|
adantl |
|
| 29 |
|
eleq1w |
|
| 30 |
|
2fveq3 |
|
| 31 |
29 30
|
ifbieq1d |
|
| 32 |
|
fvex |
|
| 33 |
|
0ex |
|
| 34 |
32 33
|
ifex |
|
| 35 |
31 5 34
|
fvmpt |
|
| 36 |
28 35
|
syl |
|
| 37 |
|
eldifn |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
iffalsed |
|
| 40 |
36 39
|
eqtrd |
|
| 41 |
16 40
|
suppss |
|
| 42 |
26 41
|
ssfid |
|
| 43 |
16
|
ffund |
|
| 44 |
|
omelon |
|
| 45 |
44
|
a1i |
|
| 46 |
45 1
|
elmapd |
|
| 47 |
16 46
|
mpbird |
|
| 48 |
13
|
a1i |
|
| 49 |
|
funisfsupp |
|
| 50 |
43 47 48 49
|
syl3anc |
|
| 51 |
42 50
|
mpbird |
|
| 52 |
|
eqid |
|
| 53 |
52 45 1
|
cantnfs |
|
| 54 |
16 51 53
|
mpbir2and |
|
| 55 |
52 45 1
|
cantnff |
|
| 56 |
55 54
|
ffvelcdmd |
|
| 57 |
54 56
|
jca |
|