Metamath Proof Explorer


Theorem cantnfub

Description: Given a finite number of terms of the form ( (om ^o ( An ) ) .o ( Mn ) ) with distinct exponents, we may order them from largest to smallest and find the sum is less than ( om ^o X ) when ( An ) is less than X and ( Mn ) is less than _om . Lemma 5.2 of Schloeder p. 15. (Contributed by RP, 31-Jan-2025)

Ref Expression
Hypotheses cantnfub.0 φ X On
cantnfub.n φ N ω
cantnfub.a φ A : N 1-1 X
cantnfub.m φ M : N ω
cantnfub.f F = x X if x ran A M A -1 x
Assertion cantnfub φ F dom ω CNF X ω CNF X F ω 𝑜 X

Proof

Step Hyp Ref Expression
1 cantnfub.0 φ X On
2 cantnfub.n φ N ω
3 cantnfub.a φ A : N 1-1 X
4 cantnfub.m φ M : N ω
5 cantnfub.f F = x X if x ran A M A -1 x
6 4 ad2antrr φ x X x ran A M : N ω
7 3 ad2antrr φ x X x ran A A : N 1-1 X
8 f1f1orn A : N 1-1 X A : N 1-1 onto ran A
9 7 8 syl φ x X x ran A A : N 1-1 onto ran A
10 f1ocnvdm A : N 1-1 onto ran A x ran A A -1 x N
11 9 10 sylancom φ x X x ran A A -1 x N
12 6 11 ffvelcdmd φ x X x ran A M A -1 x ω
13 peano1 ω
14 13 a1i φ x X ¬ x ran A ω
15 12 14 ifclda φ x X if x ran A M A -1 x ω
16 15 5 fmptd φ F : X ω
17 f1fn A : N 1-1 X A Fn N
18 3 17 syl φ A Fn N
19 nnon N ω N On
20 onfin N On N Fin N ω
21 2 19 20 3syl φ N Fin N ω
22 2 21 mpbird φ N Fin
23 18 22 jca φ A Fn N N Fin
24 fnfi A Fn N N Fin A Fin
25 rnfi A Fin ran A Fin
26 23 24 25 3syl φ ran A Fin
27 eldifi y X ran A y X
28 27 adantl φ y X ran A y X
29 eleq1w x = y x ran A y ran A
30 2fveq3 x = y M A -1 x = M A -1 y
31 29 30 ifbieq1d x = y if x ran A M A -1 x = if y ran A M A -1 y
32 fvex M A -1 y V
33 0ex V
34 32 33 ifex if y ran A M A -1 y V
35 31 5 34 fvmpt y X F y = if y ran A M A -1 y
36 28 35 syl φ y X ran A F y = if y ran A M A -1 y
37 eldifn y X ran A ¬ y ran A
38 37 adantl φ y X ran A ¬ y ran A
39 38 iffalsed φ y X ran A if y ran A M A -1 y =
40 36 39 eqtrd φ y X ran A F y =
41 16 40 suppss φ F supp ran A
42 26 41 ssfid φ F supp Fin
43 16 ffund φ Fun F
44 omelon ω On
45 44 a1i φ ω On
46 45 1 elmapd φ F ω X F : X ω
47 16 46 mpbird φ F ω X
48 13 a1i φ ω
49 funisfsupp Fun F F ω X ω finSupp F F supp Fin
50 43 47 48 49 syl3anc φ finSupp F F supp Fin
51 42 50 mpbird φ finSupp F
52 eqid dom ω CNF X = dom ω CNF X
53 52 45 1 cantnfs φ F dom ω CNF X F : X ω finSupp F
54 16 51 53 mpbir2and φ F dom ω CNF X
55 52 45 1 cantnff φ ω CNF X : dom ω CNF X ω 𝑜 X
56 55 54 ffvelcdmd φ ω CNF X F ω 𝑜 X
57 54 56 jca φ F dom ω CNF X ω CNF X F ω 𝑜 X