Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfub.0 |
|
2 |
|
cantnfub.n |
|
3 |
|
cantnfub.a |
|
4 |
|
cantnfub.m |
|
5 |
|
cantnfub.f |
|
6 |
4
|
ad2antrr |
|
7 |
3
|
ad2antrr |
|
8 |
|
f1f1orn |
|
9 |
7 8
|
syl |
|
10 |
|
f1ocnvdm |
|
11 |
9 10
|
sylancom |
|
12 |
6 11
|
ffvelcdmd |
|
13 |
|
peano1 |
|
14 |
13
|
a1i |
|
15 |
12 14
|
ifclda |
|
16 |
15 5
|
fmptd |
|
17 |
|
f1fn |
|
18 |
3 17
|
syl |
|
19 |
|
nnon |
|
20 |
|
onfin |
|
21 |
2 19 20
|
3syl |
|
22 |
2 21
|
mpbird |
|
23 |
18 22
|
jca |
|
24 |
|
fnfi |
|
25 |
|
rnfi |
|
26 |
23 24 25
|
3syl |
|
27 |
|
eldifi |
|
28 |
27
|
adantl |
|
29 |
|
eleq1w |
|
30 |
|
2fveq3 |
|
31 |
29 30
|
ifbieq1d |
|
32 |
|
fvex |
|
33 |
|
0ex |
|
34 |
32 33
|
ifex |
|
35 |
31 5 34
|
fvmpt |
|
36 |
28 35
|
syl |
|
37 |
|
eldifn |
|
38 |
37
|
adantl |
|
39 |
38
|
iffalsed |
|
40 |
36 39
|
eqtrd |
|
41 |
16 40
|
suppss |
|
42 |
26 41
|
ssfid |
|
43 |
16
|
ffund |
|
44 |
|
omelon |
|
45 |
44
|
a1i |
|
46 |
45 1
|
elmapd |
|
47 |
16 46
|
mpbird |
|
48 |
13
|
a1i |
|
49 |
|
funisfsupp |
|
50 |
43 47 48 49
|
syl3anc |
|
51 |
42 50
|
mpbird |
|
52 |
|
eqid |
|
53 |
52 45 1
|
cantnfs |
|
54 |
16 51 53
|
mpbir2and |
|
55 |
52 45 1
|
cantnff |
|
56 |
55 54
|
ffvelcdmd |
|
57 |
54 56
|
jca |
|