| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfub.0 |  |-  ( ph -> X e. On ) | 
						
							| 2 |  | cantnfub.n |  |-  ( ph -> N e. _om ) | 
						
							| 3 |  | cantnfub.a |  |-  ( ph -> A : N -1-1-> X ) | 
						
							| 4 |  | cantnfub.m |  |-  ( ph -> M : N --> _om ) | 
						
							| 5 |  | cantnfub.f |  |-  F = ( x e. X |-> if ( x e. ran A , ( M ` ( `' A ` x ) ) , (/) ) ) | 
						
							| 6 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> M : N --> _om ) | 
						
							| 7 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> A : N -1-1-> X ) | 
						
							| 8 |  | f1f1orn |  |-  ( A : N -1-1-> X -> A : N -1-1-onto-> ran A ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> A : N -1-1-onto-> ran A ) | 
						
							| 10 |  | f1ocnvdm |  |-  ( ( A : N -1-1-onto-> ran A /\ x e. ran A ) -> ( `' A ` x ) e. N ) | 
						
							| 11 | 9 10 | sylancom |  |-  ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> ( `' A ` x ) e. N ) | 
						
							| 12 | 6 11 | ffvelcdmd |  |-  ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> ( M ` ( `' A ` x ) ) e. _om ) | 
						
							| 13 |  | peano1 |  |-  (/) e. _om | 
						
							| 14 | 13 | a1i |  |-  ( ( ( ph /\ x e. X ) /\ -. x e. ran A ) -> (/) e. _om ) | 
						
							| 15 | 12 14 | ifclda |  |-  ( ( ph /\ x e. X ) -> if ( x e. ran A , ( M ` ( `' A ` x ) ) , (/) ) e. _om ) | 
						
							| 16 | 15 5 | fmptd |  |-  ( ph -> F : X --> _om ) | 
						
							| 17 |  | f1fn |  |-  ( A : N -1-1-> X -> A Fn N ) | 
						
							| 18 | 3 17 | syl |  |-  ( ph -> A Fn N ) | 
						
							| 19 |  | nnon |  |-  ( N e. _om -> N e. On ) | 
						
							| 20 |  | onfin |  |-  ( N e. On -> ( N e. Fin <-> N e. _om ) ) | 
						
							| 21 | 2 19 20 | 3syl |  |-  ( ph -> ( N e. Fin <-> N e. _om ) ) | 
						
							| 22 | 2 21 | mpbird |  |-  ( ph -> N e. Fin ) | 
						
							| 23 | 18 22 | jca |  |-  ( ph -> ( A Fn N /\ N e. Fin ) ) | 
						
							| 24 |  | fnfi |  |-  ( ( A Fn N /\ N e. Fin ) -> A e. Fin ) | 
						
							| 25 |  | rnfi |  |-  ( A e. Fin -> ran A e. Fin ) | 
						
							| 26 | 23 24 25 | 3syl |  |-  ( ph -> ran A e. Fin ) | 
						
							| 27 |  | eldifi |  |-  ( y e. ( X \ ran A ) -> y e. X ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ y e. ( X \ ran A ) ) -> y e. X ) | 
						
							| 29 |  | eleq1w |  |-  ( x = y -> ( x e. ran A <-> y e. ran A ) ) | 
						
							| 30 |  | 2fveq3 |  |-  ( x = y -> ( M ` ( `' A ` x ) ) = ( M ` ( `' A ` y ) ) ) | 
						
							| 31 | 29 30 | ifbieq1d |  |-  ( x = y -> if ( x e. ran A , ( M ` ( `' A ` x ) ) , (/) ) = if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) ) | 
						
							| 32 |  | fvex |  |-  ( M ` ( `' A ` y ) ) e. _V | 
						
							| 33 |  | 0ex |  |-  (/) e. _V | 
						
							| 34 | 32 33 | ifex |  |-  if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) e. _V | 
						
							| 35 | 31 5 34 | fvmpt |  |-  ( y e. X -> ( F ` y ) = if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) ) | 
						
							| 36 | 28 35 | syl |  |-  ( ( ph /\ y e. ( X \ ran A ) ) -> ( F ` y ) = if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) ) | 
						
							| 37 |  | eldifn |  |-  ( y e. ( X \ ran A ) -> -. y e. ran A ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ y e. ( X \ ran A ) ) -> -. y e. ran A ) | 
						
							| 39 | 38 | iffalsed |  |-  ( ( ph /\ y e. ( X \ ran A ) ) -> if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) = (/) ) | 
						
							| 40 | 36 39 | eqtrd |  |-  ( ( ph /\ y e. ( X \ ran A ) ) -> ( F ` y ) = (/) ) | 
						
							| 41 | 16 40 | suppss |  |-  ( ph -> ( F supp (/) ) C_ ran A ) | 
						
							| 42 | 26 41 | ssfid |  |-  ( ph -> ( F supp (/) ) e. Fin ) | 
						
							| 43 | 16 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 44 |  | omelon |  |-  _om e. On | 
						
							| 45 | 44 | a1i |  |-  ( ph -> _om e. On ) | 
						
							| 46 | 45 1 | elmapd |  |-  ( ph -> ( F e. ( _om ^m X ) <-> F : X --> _om ) ) | 
						
							| 47 | 16 46 | mpbird |  |-  ( ph -> F e. ( _om ^m X ) ) | 
						
							| 48 | 13 | a1i |  |-  ( ph -> (/) e. _om ) | 
						
							| 49 |  | funisfsupp |  |-  ( ( Fun F /\ F e. ( _om ^m X ) /\ (/) e. _om ) -> ( F finSupp (/) <-> ( F supp (/) ) e. Fin ) ) | 
						
							| 50 | 43 47 48 49 | syl3anc |  |-  ( ph -> ( F finSupp (/) <-> ( F supp (/) ) e. Fin ) ) | 
						
							| 51 | 42 50 | mpbird |  |-  ( ph -> F finSupp (/) ) | 
						
							| 52 |  | eqid |  |-  dom ( _om CNF X ) = dom ( _om CNF X ) | 
						
							| 53 | 52 45 1 | cantnfs |  |-  ( ph -> ( F e. dom ( _om CNF X ) <-> ( F : X --> _om /\ F finSupp (/) ) ) ) | 
						
							| 54 | 16 51 53 | mpbir2and |  |-  ( ph -> F e. dom ( _om CNF X ) ) | 
						
							| 55 | 52 45 1 | cantnff |  |-  ( ph -> ( _om CNF X ) : dom ( _om CNF X ) --> ( _om ^o X ) ) | 
						
							| 56 | 55 54 | ffvelcdmd |  |-  ( ph -> ( ( _om CNF X ) ` F ) e. ( _om ^o X ) ) | 
						
							| 57 | 54 56 | jca |  |-  ( ph -> ( F e. dom ( _om CNF X ) /\ ( ( _om CNF X ) ` F ) e. ( _om ^o X ) ) ) |