Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfub.0 |
|- ( ph -> X e. On ) |
2 |
|
cantnfub.n |
|- ( ph -> N e. _om ) |
3 |
|
cantnfub.a |
|- ( ph -> A : N -1-1-> X ) |
4 |
|
cantnfub.m |
|- ( ph -> M : N --> _om ) |
5 |
|
cantnfub.f |
|- F = ( x e. X |-> if ( x e. ran A , ( M ` ( `' A ` x ) ) , (/) ) ) |
6 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> M : N --> _om ) |
7 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> A : N -1-1-> X ) |
8 |
|
f1f1orn |
|- ( A : N -1-1-> X -> A : N -1-1-onto-> ran A ) |
9 |
7 8
|
syl |
|- ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> A : N -1-1-onto-> ran A ) |
10 |
|
f1ocnvdm |
|- ( ( A : N -1-1-onto-> ran A /\ x e. ran A ) -> ( `' A ` x ) e. N ) |
11 |
9 10
|
sylancom |
|- ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> ( `' A ` x ) e. N ) |
12 |
6 11
|
ffvelcdmd |
|- ( ( ( ph /\ x e. X ) /\ x e. ran A ) -> ( M ` ( `' A ` x ) ) e. _om ) |
13 |
|
peano1 |
|- (/) e. _om |
14 |
13
|
a1i |
|- ( ( ( ph /\ x e. X ) /\ -. x e. ran A ) -> (/) e. _om ) |
15 |
12 14
|
ifclda |
|- ( ( ph /\ x e. X ) -> if ( x e. ran A , ( M ` ( `' A ` x ) ) , (/) ) e. _om ) |
16 |
15 5
|
fmptd |
|- ( ph -> F : X --> _om ) |
17 |
|
f1fn |
|- ( A : N -1-1-> X -> A Fn N ) |
18 |
3 17
|
syl |
|- ( ph -> A Fn N ) |
19 |
|
nnon |
|- ( N e. _om -> N e. On ) |
20 |
|
onfin |
|- ( N e. On -> ( N e. Fin <-> N e. _om ) ) |
21 |
2 19 20
|
3syl |
|- ( ph -> ( N e. Fin <-> N e. _om ) ) |
22 |
2 21
|
mpbird |
|- ( ph -> N e. Fin ) |
23 |
18 22
|
jca |
|- ( ph -> ( A Fn N /\ N e. Fin ) ) |
24 |
|
fnfi |
|- ( ( A Fn N /\ N e. Fin ) -> A e. Fin ) |
25 |
|
rnfi |
|- ( A e. Fin -> ran A e. Fin ) |
26 |
23 24 25
|
3syl |
|- ( ph -> ran A e. Fin ) |
27 |
|
eldifi |
|- ( y e. ( X \ ran A ) -> y e. X ) |
28 |
27
|
adantl |
|- ( ( ph /\ y e. ( X \ ran A ) ) -> y e. X ) |
29 |
|
eleq1w |
|- ( x = y -> ( x e. ran A <-> y e. ran A ) ) |
30 |
|
2fveq3 |
|- ( x = y -> ( M ` ( `' A ` x ) ) = ( M ` ( `' A ` y ) ) ) |
31 |
29 30
|
ifbieq1d |
|- ( x = y -> if ( x e. ran A , ( M ` ( `' A ` x ) ) , (/) ) = if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) ) |
32 |
|
fvex |
|- ( M ` ( `' A ` y ) ) e. _V |
33 |
|
0ex |
|- (/) e. _V |
34 |
32 33
|
ifex |
|- if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) e. _V |
35 |
31 5 34
|
fvmpt |
|- ( y e. X -> ( F ` y ) = if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) ) |
36 |
28 35
|
syl |
|- ( ( ph /\ y e. ( X \ ran A ) ) -> ( F ` y ) = if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) ) |
37 |
|
eldifn |
|- ( y e. ( X \ ran A ) -> -. y e. ran A ) |
38 |
37
|
adantl |
|- ( ( ph /\ y e. ( X \ ran A ) ) -> -. y e. ran A ) |
39 |
38
|
iffalsed |
|- ( ( ph /\ y e. ( X \ ran A ) ) -> if ( y e. ran A , ( M ` ( `' A ` y ) ) , (/) ) = (/) ) |
40 |
36 39
|
eqtrd |
|- ( ( ph /\ y e. ( X \ ran A ) ) -> ( F ` y ) = (/) ) |
41 |
16 40
|
suppss |
|- ( ph -> ( F supp (/) ) C_ ran A ) |
42 |
26 41
|
ssfid |
|- ( ph -> ( F supp (/) ) e. Fin ) |
43 |
16
|
ffund |
|- ( ph -> Fun F ) |
44 |
|
omelon |
|- _om e. On |
45 |
44
|
a1i |
|- ( ph -> _om e. On ) |
46 |
45 1
|
elmapd |
|- ( ph -> ( F e. ( _om ^m X ) <-> F : X --> _om ) ) |
47 |
16 46
|
mpbird |
|- ( ph -> F e. ( _om ^m X ) ) |
48 |
13
|
a1i |
|- ( ph -> (/) e. _om ) |
49 |
|
funisfsupp |
|- ( ( Fun F /\ F e. ( _om ^m X ) /\ (/) e. _om ) -> ( F finSupp (/) <-> ( F supp (/) ) e. Fin ) ) |
50 |
43 47 48 49
|
syl3anc |
|- ( ph -> ( F finSupp (/) <-> ( F supp (/) ) e. Fin ) ) |
51 |
42 50
|
mpbird |
|- ( ph -> F finSupp (/) ) |
52 |
|
eqid |
|- dom ( _om CNF X ) = dom ( _om CNF X ) |
53 |
52 45 1
|
cantnfs |
|- ( ph -> ( F e. dom ( _om CNF X ) <-> ( F : X --> _om /\ F finSupp (/) ) ) ) |
54 |
16 51 53
|
mpbir2and |
|- ( ph -> F e. dom ( _om CNF X ) ) |
55 |
52 45 1
|
cantnff |
|- ( ph -> ( _om CNF X ) : dom ( _om CNF X ) --> ( _om ^o X ) ) |
56 |
55 54
|
ffvelcdmd |
|- ( ph -> ( ( _om CNF X ) ` F ) e. ( _om ^o X ) ) |
57 |
54 56
|
jca |
|- ( ph -> ( F e. dom ( _om CNF X ) /\ ( ( _om CNF X ) ` F ) e. ( _om ^o X ) ) ) |