| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfub2.n |  |-  ( ph -> N e. _om ) | 
						
							| 2 |  | cantnfub2.a |  |-  ( ph -> A : N -1-1-> On ) | 
						
							| 3 |  | cantnfub2.m |  |-  ( ph -> M : N --> _om ) | 
						
							| 4 |  | cantnfub2.f |  |-  F = ( x e. suc U. ran A |-> if ( x e. ran A , ( M ` ( `' A ` x ) ) , (/) ) ) | 
						
							| 5 |  | f1fn |  |-  ( A : N -1-1-> On -> A Fn N ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> A Fn N ) | 
						
							| 7 |  | nnfi |  |-  ( N e. _om -> N e. Fin ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> N e. Fin ) | 
						
							| 9 |  | fnfi |  |-  ( ( A Fn N /\ N e. Fin ) -> A e. Fin ) | 
						
							| 10 | 6 8 9 | syl2anc |  |-  ( ph -> A e. Fin ) | 
						
							| 11 |  | rnfi |  |-  ( A e. Fin -> ran A e. Fin ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> ran A e. Fin ) | 
						
							| 13 |  | f1f |  |-  ( A : N -1-1-> On -> A : N --> On ) | 
						
							| 14 | 2 13 | syl |  |-  ( ph -> A : N --> On ) | 
						
							| 15 | 14 | frnd |  |-  ( ph -> ran A C_ On ) | 
						
							| 16 |  | ssonuni |  |-  ( ran A e. Fin -> ( ran A C_ On -> U. ran A e. On ) ) | 
						
							| 17 | 12 15 16 | sylc |  |-  ( ph -> U. ran A e. On ) | 
						
							| 18 |  | onsuc |  |-  ( U. ran A e. On -> suc U. ran A e. On ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> suc U. ran A e. On ) | 
						
							| 20 |  | onsucuni |  |-  ( ran A C_ On -> ran A C_ suc U. ran A ) | 
						
							| 21 | 15 20 | syl |  |-  ( ph -> ran A C_ suc U. ran A ) | 
						
							| 22 |  | f1ssr |  |-  ( ( A : N -1-1-> On /\ ran A C_ suc U. ran A ) -> A : N -1-1-> suc U. ran A ) | 
						
							| 23 | 2 21 22 | syl2anc |  |-  ( ph -> A : N -1-1-> suc U. ran A ) | 
						
							| 24 | 19 1 23 3 4 | cantnfub |  |-  ( ph -> ( F e. dom ( _om CNF suc U. ran A ) /\ ( ( _om CNF suc U. ran A ) ` F ) e. ( _om ^o suc U. ran A ) ) ) | 
						
							| 25 |  | 3anass |  |-  ( ( suc U. ran A e. On /\ F e. dom ( _om CNF suc U. ran A ) /\ ( ( _om CNF suc U. ran A ) ` F ) e. ( _om ^o suc U. ran A ) ) <-> ( suc U. ran A e. On /\ ( F e. dom ( _om CNF suc U. ran A ) /\ ( ( _om CNF suc U. ran A ) ` F ) e. ( _om ^o suc U. ran A ) ) ) ) | 
						
							| 26 | 19 24 25 | sylanbrc |  |-  ( ph -> ( suc U. ran A e. On /\ F e. dom ( _om CNF suc U. ran A ) /\ ( ( _om CNF suc U. ran A ) ` F ) e. ( _om ^o suc U. ran A ) ) ) |