| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfub2.n |
|- ( ph -> N e. _om ) |
| 2 |
|
cantnfub2.a |
|- ( ph -> A : N -1-1-> On ) |
| 3 |
|
cantnfub2.m |
|- ( ph -> M : N --> _om ) |
| 4 |
|
cantnfub2.f |
|- F = ( x e. suc U. ran A |-> if ( x e. ran A , ( M ` ( `' A ` x ) ) , (/) ) ) |
| 5 |
|
f1fn |
|- ( A : N -1-1-> On -> A Fn N ) |
| 6 |
2 5
|
syl |
|- ( ph -> A Fn N ) |
| 7 |
|
nnfi |
|- ( N e. _om -> N e. Fin ) |
| 8 |
1 7
|
syl |
|- ( ph -> N e. Fin ) |
| 9 |
|
fnfi |
|- ( ( A Fn N /\ N e. Fin ) -> A e. Fin ) |
| 10 |
6 8 9
|
syl2anc |
|- ( ph -> A e. Fin ) |
| 11 |
|
rnfi |
|- ( A e. Fin -> ran A e. Fin ) |
| 12 |
10 11
|
syl |
|- ( ph -> ran A e. Fin ) |
| 13 |
|
f1f |
|- ( A : N -1-1-> On -> A : N --> On ) |
| 14 |
2 13
|
syl |
|- ( ph -> A : N --> On ) |
| 15 |
14
|
frnd |
|- ( ph -> ran A C_ On ) |
| 16 |
|
ssonuni |
|- ( ran A e. Fin -> ( ran A C_ On -> U. ran A e. On ) ) |
| 17 |
12 15 16
|
sylc |
|- ( ph -> U. ran A e. On ) |
| 18 |
|
onsuc |
|- ( U. ran A e. On -> suc U. ran A e. On ) |
| 19 |
17 18
|
syl |
|- ( ph -> suc U. ran A e. On ) |
| 20 |
|
onsucuni |
|- ( ran A C_ On -> ran A C_ suc U. ran A ) |
| 21 |
15 20
|
syl |
|- ( ph -> ran A C_ suc U. ran A ) |
| 22 |
|
f1ssr |
|- ( ( A : N -1-1-> On /\ ran A C_ suc U. ran A ) -> A : N -1-1-> suc U. ran A ) |
| 23 |
2 21 22
|
syl2anc |
|- ( ph -> A : N -1-1-> suc U. ran A ) |
| 24 |
19 1 23 3 4
|
cantnfub |
|- ( ph -> ( F e. dom ( _om CNF suc U. ran A ) /\ ( ( _om CNF suc U. ran A ) ` F ) e. ( _om ^o suc U. ran A ) ) ) |
| 25 |
|
3anass |
|- ( ( suc U. ran A e. On /\ F e. dom ( _om CNF suc U. ran A ) /\ ( ( _om CNF suc U. ran A ) ` F ) e. ( _om ^o suc U. ran A ) ) <-> ( suc U. ran A e. On /\ ( F e. dom ( _om CNF suc U. ran A ) /\ ( ( _om CNF suc U. ran A ) ` F ) e. ( _om ^o suc U. ran A ) ) ) ) |
| 26 |
19 24 25
|
sylanbrc |
|- ( ph -> ( suc U. ran A e. On /\ F e. dom ( _om CNF suc U. ran A ) /\ ( ( _om CNF suc U. ran A ) ` F ) e. ( _om ^o suc U. ran A ) ) ) |