Metamath Proof Explorer


Theorem bropabg

Description: Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt . (Contributed by RP, 26-Sep-2024)

Ref Expression
Hypotheses bropabg.xA
|- ( x = A -> ( ph <-> ps ) )
bropabg.yB
|- ( y = B -> ( ps <-> ch ) )
bropabg.R
|- R = { <. x , y >. | ph }
Assertion bropabg
|- ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ch ) )

Proof

Step Hyp Ref Expression
1 bropabg.xA
 |-  ( x = A -> ( ph <-> ps ) )
2 bropabg.yB
 |-  ( y = B -> ( ps <-> ch ) )
3 bropabg.R
 |-  R = { <. x , y >. | ph }
4 3 bropaex12
 |-  ( A R B -> ( A e. _V /\ B e. _V ) )
5 1 2 3 brabg
 |-  ( ( A e. _V /\ B e. _V ) -> ( A R B <-> ch ) )
6 4 5 biadanii
 |-  ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ch ) )