Description: Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt . (Contributed by RP, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bropabg.xA | |- ( x = A -> ( ph <-> ps ) ) |
|
| bropabg.yB | |- ( y = B -> ( ps <-> ch ) ) |
||
| bropabg.R | |- R = { <. x , y >. | ph } |
||
| Assertion | bropabg | |- ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bropabg.xA | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | bropabg.yB | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | bropabg.R | |- R = { <. x , y >. | ph } |
|
| 4 | 3 | bropaex12 | |- ( A R B -> ( A e. _V /\ B e. _V ) ) |
| 5 | 1 2 3 | brabg | |- ( ( A e. _V /\ B e. _V ) -> ( A R B <-> ch ) ) |
| 6 | 4 5 | biadanii | |- ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ch ) ) |