Metamath Proof Explorer


Theorem bropabg

Description: Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt . (Contributed by RP, 26-Sep-2024)

Ref Expression
Hypotheses bropabg.xA x = A φ ψ
bropabg.yB y = B ψ χ
bropabg.R R = x y | φ
Assertion bropabg A R B A V B V χ

Proof

Step Hyp Ref Expression
1 bropabg.xA x = A φ ψ
2 bropabg.yB y = B ψ χ
3 bropabg.R R = x y | φ
4 3 bropaex12 A R B A V B V
5 1 2 3 brabg A V B V A R B χ
6 4 5 biadanii A R B A V B V χ