Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eldifi |
|
3 |
2
|
adantr |
|
4 |
|
simpr |
|
5 |
|
eqid |
|
6 |
1 3 4 5
|
cantnf |
|
7 |
6
|
adantr |
|
8 |
|
simpr |
|
9 |
|
ondif2 |
|
10 |
9
|
simprbi |
|
11 |
|
dif20el |
|
12 |
10 11
|
ifcld |
|
13 |
12
|
ad2antrr |
|
14 |
13
|
fmpttd |
|
15 |
11
|
adantr |
|
16 |
|
eqid |
|
17 |
4 15 16
|
sniffsupp |
|
18 |
1 3 4
|
cantnfs |
|
19 |
14 17 18
|
mpbir2and |
|
20 |
19
|
adantr |
|
21 |
|
isorel |
|
22 |
7 8 20 21
|
syl12anc |
|
23 |
22
|
adantrl |
|
24 |
23
|
adantr |
|
25 |
|
fvexd |
|
26 |
|
epelg |
|
27 |
25 26
|
syl |
|
28 |
2
|
ad2antrr |
|
29 |
|
simplr |
|
30 |
|
fconst6g |
|
31 |
11 30
|
syl |
|
32 |
31
|
adantr |
|
33 |
4 15
|
fczfsuppd |
|
34 |
1 3 4
|
cantnfs |
|
35 |
32 33 34
|
mpbir2and |
|
36 |
35
|
adantr |
|
37 |
|
simpr |
|
38 |
10
|
ad2antrr |
|
39 |
|
fczsupp0 |
|
40 |
|
0ss |
|
41 |
39 40
|
eqsstri |
|
42 |
41
|
a1i |
|
43 |
|
0ex |
|
44 |
43
|
fvconst2 |
|
45 |
44
|
ifeq2d |
|
46 |
45
|
mpteq2ia |
|
47 |
46
|
eqcomi |
|
48 |
1 28 29 36 37 38 42 47
|
cantnfp1 |
|
49 |
48
|
simprd |
|
50 |
49
|
adantrl |
|
51 |
|
oecl |
|
52 |
3 51
|
sylan |
|
53 |
|
om1 |
|
54 |
52 53
|
syl |
|
55 |
1 3 4 15
|
cantnf0 |
|
56 |
55
|
adantr |
|
57 |
54 56
|
oveq12d |
|
58 |
|
oa0 |
|
59 |
52 58
|
syl |
|
60 |
57 59
|
eqtrd |
|
61 |
60
|
adantrr |
|
62 |
50 61
|
eqtrd |
|
63 |
62
|
eleq2d |
|
64 |
63
|
exp32 |
|
65 |
64
|
adantrd |
|
66 |
65
|
imp31 |
|
67 |
24 27 66
|
3bitrrd |
|
68 |
|
fveq1 |
|
69 |
68
|
eleq1d |
|
70 |
|
fveq1 |
|
71 |
70
|
eqeq1d |
|
72 |
71
|
imbi2d |
|
73 |
72
|
ralbidv |
|
74 |
69 73
|
anbi12d |
|
75 |
74
|
rexbidv |
|
76 |
|
fveq1 |
|
77 |
76
|
eleq2d |
|
78 |
|
fveq1 |
|
79 |
78
|
eqeq2d |
|
80 |
79
|
imbi2d |
|
81 |
80
|
ralbidv |
|
82 |
77 81
|
anbi12d |
|
83 |
82
|
rexbidv |
|
84 |
75 83 5
|
bropabg |
|
85 |
|
fveq2 |
|
86 |
85
|
adantr |
|
87 |
|
eqeq1 |
|
88 |
87
|
ifbid |
|
89 |
|
1oex |
|
90 |
89 43
|
ifex |
|
91 |
88 16 90
|
fvmpt |
|
92 |
|
iftrue |
|
93 |
91 92
|
sylan9eqr |
|
94 |
86 93
|
eleq12d |
|
95 |
|
el1o |
|
96 |
95
|
a1i |
|
97 |
96
|
biimpd |
|
98 |
|
simpl |
|
99 |
97 98
|
jctild |
|
100 |
94 99
|
sylbid |
|
101 |
100
|
expimpd |
|
102 |
91
|
adantl |
|
103 |
|
simpl |
|
104 |
103
|
neneqd |
|
105 |
104
|
iffalsed |
|
106 |
102 105
|
eqtrd |
|
107 |
106
|
eleq2d |
|
108 |
107
|
biimpd |
|
109 |
108
|
expimpd |
|
110 |
|
noel |
|
111 |
110
|
pm2.21i |
|
112 |
109 111
|
syl6 |
|
113 |
101 112
|
pm2.61ine |
|
114 |
113
|
a1i |
|
115 |
|
fveqeq2 |
|
116 |
115
|
ralsng |
|
117 |
116
|
anbi2d |
|
118 |
117
|
biimprd |
|
119 |
118
|
adantl |
|
120 |
4
|
anim1i |
|
121 |
120
|
adantr |
|
122 |
|
pm3.31 |
|
123 |
122
|
a1i |
|
124 |
|
eldif |
|
125 |
|
simplr |
|
126 |
125
|
eleq1d |
|
127 |
|
simpl |
|
128 |
127
|
adantr |
|
129 |
|
onelon |
|
130 |
128 129
|
sylan |
|
131 |
|
simpllr |
|
132 |
|
ontri1 |
|
133 |
130 131 132
|
syl2anc |
|
134 |
133
|
con2bid |
|
135 |
|
onsssuc |
|
136 |
130 131 135
|
syl2anc |
|
137 |
136
|
notbid |
|
138 |
126 134 137
|
3bitrrd |
|
139 |
138
|
pm5.32da |
|
140 |
124 139
|
bitrid |
|
141 |
140
|
biimpd |
|
142 |
141
|
imim1d |
|
143 |
|
eldifi |
|
144 |
143
|
adantl |
|
145 |
|
eqeq1 |
|
146 |
145
|
ifbid |
|
147 |
89 43
|
ifex |
|
148 |
146 16 147
|
fvmpt |
|
149 |
144 148
|
syl |
|
150 |
128 143 129
|
syl2an |
|
151 |
|
eloni |
|
152 |
150 151
|
syl |
|
153 |
|
eloni |
|
154 |
153
|
ad2antrr |
|
155 |
|
simplr |
|
156 |
|
ordeldifsucon |
|
157 |
154 155 156
|
syl2anc |
|
158 |
157
|
biimpa |
|
159 |
|
ordirr |
|
160 |
|
eleq1 |
|
161 |
160
|
notbid |
|
162 |
159 161
|
syl5ibcom |
|
163 |
162
|
con2d |
|
164 |
163
|
adantld |
|
165 |
152 158 164
|
sylc |
|
166 |
165
|
iffalsed |
|
167 |
149 166
|
eqtrd |
|
168 |
167
|
eqeq2d |
|
169 |
168
|
biimpd |
|
170 |
169
|
ex |
|
171 |
170
|
a2d |
|
172 |
123 142 171
|
3syld |
|
173 |
172
|
ralimdv2 |
|
174 |
121 173
|
sylan |
|
175 |
174
|
adantr |
|
176 |
|
ralun |
|
177 |
176
|
adantll |
|
178 |
|
undif3 |
|
179 |
|
simpr |
|
180 |
179
|
snssd |
|
181 |
|
ssequn1 |
|
182 |
180 181
|
sylib |
|
183 |
|
simpl |
|
184 |
|
eloni |
|
185 |
|
orddif |
|
186 |
183 184 185
|
3syl |
|
187 |
186
|
eqcomd |
|
188 |
182 187
|
difeq12d |
|
189 |
178 188
|
eqtrid |
|
190 |
189
|
adantll |
|
191 |
190
|
adantr |
|
192 |
191
|
raleqdv |
|
193 |
192
|
ad2antrr |
|
194 |
177 193
|
mpbid |
|
195 |
194
|
ex |
|
196 |
175 195
|
syld |
|
197 |
196
|
expl |
|
198 |
114 119 197
|
3syld |
|
199 |
198
|
expdimp |
|
200 |
199
|
impd |
|
201 |
200
|
rexlimdva |
|
202 |
201
|
adantld |
|
203 |
84 202
|
biimtrid |
|
204 |
203
|
adantlrr |
|
205 |
67 204
|
sylbid |
|
206 |
205
|
ex |
|
207 |
|
ral0 |
|
208 |
|
ssdif0 |
|
209 |
208
|
biimpi |
|
210 |
209
|
raleqdv |
|
211 |
207 210
|
mpbiri |
|
212 |
211
|
a1i13 |
|
213 |
184
|
adantr |
|
214 |
153
|
adantl |
|
215 |
|
ordtri2or |
|
216 |
213 214 215
|
syl2anr |
|
217 |
206 212 216
|
mpjaod |
|
218 |
3
|
ad2antrr |
|
219 |
|
simpllr |
|
220 |
|
simplrr |
|
221 |
15
|
ad2antrr |
|
222 |
|
simplrl |
|
223 |
1 3 4
|
cantnfs |
|
224 |
223
|
biimpd |
|
225 |
224
|
adantld |
|
226 |
225
|
imp |
|
227 |
226
|
simpld |
|
228 |
227
|
adantr |
|
229 |
|
fveqeq2 |
|
230 |
229
|
rspccv |
|
231 |
230
|
adantl |
|
232 |
231
|
imp |
|
233 |
228 232
|
suppss |
|
234 |
1 218 219 220 221 222 233
|
cantnflt2 |
|
235 |
234
|
ex |
|
236 |
217 235
|
impbid |
|