Metamath Proof Explorer


Theorem cantnfresb

Description: A Cantor normal form which sums to less than a certain power has only zeros for larger components. (Contributed by RP, 3-Feb-2025)

Ref Expression
Assertion cantnfresb A On 2 𝑜 B On C On F dom A CNF B A CNF B F A 𝑜 C x B C F x =

Proof

Step Hyp Ref Expression
1 eqid dom A CNF B = dom A CNF B
2 eldifi A On 2 𝑜 A On
3 2 adantr A On 2 𝑜 B On A On
4 simpr A On 2 𝑜 B On B On
5 eqid a b | c B a c b c x B c x a x = b x = a b | c B a c b c x B c x a x = b x
6 1 3 4 5 cantnf A On 2 𝑜 B On A CNF B Isom a b | c B a c b c x B c x a x = b x , E dom A CNF B A 𝑜 B
7 6 adantr A On 2 𝑜 B On F dom A CNF B A CNF B Isom a b | c B a c b c x B c x a x = b x , E dom A CNF B A 𝑜 B
8 simpr A On 2 𝑜 B On F dom A CNF B F dom A CNF B
9 ondif2 A On 2 𝑜 A On 1 𝑜 A
10 9 simprbi A On 2 𝑜 1 𝑜 A
11 dif20el A On 2 𝑜 A
12 10 11 ifcld A On 2 𝑜 if y = C 1 𝑜 A
13 12 ad2antrr A On 2 𝑜 B On y B if y = C 1 𝑜 A
14 13 fmpttd A On 2 𝑜 B On y B if y = C 1 𝑜 : B A
15 11 adantr A On 2 𝑜 B On A
16 eqid y B if y = C 1 𝑜 = y B if y = C 1 𝑜
17 4 15 16 sniffsupp A On 2 𝑜 B On finSupp y B if y = C 1 𝑜
18 1 3 4 cantnfs A On 2 𝑜 B On y B if y = C 1 𝑜 dom A CNF B y B if y = C 1 𝑜 : B A finSupp y B if y = C 1 𝑜
19 14 17 18 mpbir2and A On 2 𝑜 B On y B if y = C 1 𝑜 dom A CNF B
20 19 adantr A On 2 𝑜 B On F dom A CNF B y B if y = C 1 𝑜 dom A CNF B
21 isorel A CNF B Isom a b | c B a c b c x B c x a x = b x , E dom A CNF B A 𝑜 B F dom A CNF B y B if y = C 1 𝑜 dom A CNF B F a b | c B a c b c x B c x a x = b x y B if y = C 1 𝑜 A CNF B F E A CNF B y B if y = C 1 𝑜
22 7 8 20 21 syl12anc A On 2 𝑜 B On F dom A CNF B F a b | c B a c b c x B c x a x = b x y B if y = C 1 𝑜 A CNF B F E A CNF B y B if y = C 1 𝑜
23 22 adantrl A On 2 𝑜 B On C On F dom A CNF B F a b | c B a c b c x B c x a x = b x y B if y = C 1 𝑜 A CNF B F E A CNF B y B if y = C 1 𝑜
24 23 adantr A On 2 𝑜 B On C On F dom A CNF B C B F a b | c B a c b c x B c x a x = b x y B if y = C 1 𝑜 A CNF B F E A CNF B y B if y = C 1 𝑜
25 fvexd A On 2 𝑜 B On C On F dom A CNF B C B A CNF B y B if y = C 1 𝑜 V
26 epelg A CNF B y B if y = C 1 𝑜 V A CNF B F E A CNF B y B if y = C 1 𝑜 A CNF B F A CNF B y B if y = C 1 𝑜
27 25 26 syl A On 2 𝑜 B On C On F dom A CNF B C B A CNF B F E A CNF B y B if y = C 1 𝑜 A CNF B F A CNF B y B if y = C 1 𝑜
28 2 ad2antrr A On 2 𝑜 B On C B A On
29 simplr A On 2 𝑜 B On C B B On
30 fconst6g A B × : B A
31 11 30 syl A On 2 𝑜 B × : B A
32 31 adantr A On 2 𝑜 B On B × : B A
33 4 15 fczfsuppd A On 2 𝑜 B On finSupp B ×
34 1 3 4 cantnfs A On 2 𝑜 B On B × dom A CNF B B × : B A finSupp B ×
35 32 33 34 mpbir2and A On 2 𝑜 B On B × dom A CNF B
36 35 adantr A On 2 𝑜 B On C B B × dom A CNF B
37 simpr A On 2 𝑜 B On C B C B
38 10 ad2antrr A On 2 𝑜 B On C B 1 𝑜 A
39 fczsupp0 B × supp =
40 0ss C
41 39 40 eqsstri B × supp C
42 41 a1i A On 2 𝑜 B On C B B × supp C
43 0ex V
44 43 fvconst2 y B B × y =
45 44 ifeq2d y B if y = C 1 𝑜 B × y = if y = C 1 𝑜
46 45 mpteq2ia y B if y = C 1 𝑜 B × y = y B if y = C 1 𝑜
47 46 eqcomi y B if y = C 1 𝑜 = y B if y = C 1 𝑜 B × y
48 1 28 29 36 37 38 42 47 cantnfp1 A On 2 𝑜 B On C B y B if y = C 1 𝑜 dom A CNF B A CNF B y B if y = C 1 𝑜 = A 𝑜 C 𝑜 1 𝑜 + 𝑜 A CNF B B ×
49 48 simprd A On 2 𝑜 B On C B A CNF B y B if y = C 1 𝑜 = A 𝑜 C 𝑜 1 𝑜 + 𝑜 A CNF B B ×
50 49 adantrl A On 2 𝑜 B On C On C B A CNF B y B if y = C 1 𝑜 = A 𝑜 C 𝑜 1 𝑜 + 𝑜 A CNF B B ×
51 oecl A On C On A 𝑜 C On
52 3 51 sylan A On 2 𝑜 B On C On A 𝑜 C On
53 om1 A 𝑜 C On A 𝑜 C 𝑜 1 𝑜 = A 𝑜 C
54 52 53 syl A On 2 𝑜 B On C On A 𝑜 C 𝑜 1 𝑜 = A 𝑜 C
55 1 3 4 15 cantnf0 A On 2 𝑜 B On A CNF B B × =
56 55 adantr A On 2 𝑜 B On C On A CNF B B × =
57 54 56 oveq12d A On 2 𝑜 B On C On A 𝑜 C 𝑜 1 𝑜 + 𝑜 A CNF B B × = A 𝑜 C + 𝑜
58 oa0 A 𝑜 C On A 𝑜 C + 𝑜 = A 𝑜 C
59 52 58 syl A On 2 𝑜 B On C On A 𝑜 C + 𝑜 = A 𝑜 C
60 57 59 eqtrd A On 2 𝑜 B On C On A 𝑜 C 𝑜 1 𝑜 + 𝑜 A CNF B B × = A 𝑜 C
61 60 adantrr A On 2 𝑜 B On C On C B A 𝑜 C 𝑜 1 𝑜 + 𝑜 A CNF B B × = A 𝑜 C
62 50 61 eqtrd A On 2 𝑜 B On C On C B A CNF B y B if y = C 1 𝑜 = A 𝑜 C
63 62 eleq2d A On 2 𝑜 B On C On C B A CNF B F A CNF B y B if y = C 1 𝑜 A CNF B F A 𝑜 C
64 63 exp32 A On 2 𝑜 B On C On C B A CNF B F A CNF B y B if y = C 1 𝑜 A CNF B F A 𝑜 C
65 64 adantrd A On 2 𝑜 B On C On F dom A CNF B C B A CNF B F A CNF B y B if y = C 1 𝑜 A CNF B F A 𝑜 C
66 65 imp31 A On 2 𝑜 B On C On F dom A CNF B C B A CNF B F A CNF B y B if y = C 1 𝑜 A CNF B F A 𝑜 C
67 24 27 66 3bitrrd A On 2 𝑜 B On C On F dom A CNF B C B A CNF B F A 𝑜 C F a b | c B a c b c x B c x a x = b x y B if y = C 1 𝑜
68 fveq1 a = F a c = F c
69 68 eleq1d a = F a c b c F c b c
70 fveq1 a = F a x = F x
71 70 eqeq1d a = F a x = b x F x = b x
72 71 imbi2d a = F c x a x = b x c x F x = b x
73 72 ralbidv a = F x B c x a x = b x x B c x F x = b x
74 69 73 anbi12d a = F a c b c x B c x a x = b x F c b c x B c x F x = b x
75 74 rexbidv a = F c B a c b c x B c x a x = b x c B F c b c x B c x F x = b x
76 fveq1 b = y B if y = C 1 𝑜 b c = y B if y = C 1 𝑜 c
77 76 eleq2d b = y B if y = C 1 𝑜 F c b c F c y B if y = C 1 𝑜 c
78 fveq1 b = y B if y = C 1 𝑜 b x = y B if y = C 1 𝑜 x
79 78 eqeq2d b = y B if y = C 1 𝑜 F x = b x F x = y B if y = C 1 𝑜 x
80 79 imbi2d b = y B if y = C 1 𝑜 c x F x = b x c x F x = y B if y = C 1 𝑜 x
81 80 ralbidv b = y B if y = C 1 𝑜 x B c x F x = b x x B c x F x = y B if y = C 1 𝑜 x
82 77 81 anbi12d b = y B if y = C 1 𝑜 F c b c x B c x F x = b x F c y B if y = C 1 𝑜 c x B c x F x = y B if y = C 1 𝑜 x
83 82 rexbidv b = y B if y = C 1 𝑜 c B F c b c x B c x F x = b x c B F c y B if y = C 1 𝑜 c x B c x F x = y B if y = C 1 𝑜 x
84 75 83 5 bropabg F a b | c B a c b c x B c x a x = b x y B if y = C 1 𝑜 F V y B if y = C 1 𝑜 V c B F c y B if y = C 1 𝑜 c x B c x F x = y B if y = C 1 𝑜 x
85 fveq2 c = C F c = F C
86 85 adantr c = C c B F c = F C
87 eqeq1 y = c y = C c = C
88 87 ifbid y = c if y = C 1 𝑜 = if c = C 1 𝑜
89 1oex 1 𝑜 V
90 89 43 ifex if c = C 1 𝑜 V
91 88 16 90 fvmpt c B y B if y = C 1 𝑜 c = if c = C 1 𝑜
92 iftrue c = C if c = C 1 𝑜 = 1 𝑜
93 91 92 sylan9eqr c = C c B y B if y = C 1 𝑜 c = 1 𝑜
94 86 93 eleq12d c = C c B F c y B if y = C 1 𝑜 c F C 1 𝑜
95 el1o F C 1 𝑜 F C =
96 95 a1i c = C c B F C 1 𝑜 F C =
97 96 biimpd c = C c B F C 1 𝑜 F C =
98 simpl c = C c B c = C
99 97 98 jctild c = C c B F C 1 𝑜 c = C F C =
100 94 99 sylbid c = C c B F c y B if y = C 1 𝑜 c c = C F C =
101 100 expimpd c = C c B F c y B if y = C 1 𝑜 c c = C F C =
102 91 adantl c C c B y B if y = C 1 𝑜 c = if c = C 1 𝑜
103 simpl c C c B c C
104 103 neneqd c C c B ¬ c = C
105 104 iffalsed c C c B if c = C 1 𝑜 =
106 102 105 eqtrd c C c B y B if y = C 1 𝑜 c =
107 106 eleq2d c C c B F c y B if y = C 1 𝑜 c F c
108 107 biimpd c C c B F c y B if y = C 1 𝑜 c F c
109 108 expimpd c C c B F c y B if y = C 1 𝑜 c F c
110 noel ¬ F c
111 110 pm2.21i F c c = C F C =
112 109 111 syl6 c C c B F c y B if y = C 1 𝑜 c c = C F C =
113 101 112 pm2.61ine c B F c y B if y = C 1 𝑜 c c = C F C =
114 113 a1i A On 2 𝑜 B On C On C B c B F c y B if y = C 1 𝑜 c c = C F C =
115 fveqeq2 x = C F x = F C =
116 115 ralsng C B x C F x = F C =
117 116 anbi2d C B c = C x C F x = c = C F C =
118 117 biimprd C B c = C F C = c = C x C F x =
119 118 adantl A On 2 𝑜 B On C On C B c = C F C = c = C x C F x =
120 4 anim1i A On 2 𝑜 B On C On B On C On
121 120 adantr A On 2 𝑜 B On C On C B B On C On
122 pm3.31 x B c x F x = y B if y = C 1 𝑜 x x B c x F x = y B if y = C 1 𝑜 x
123 122 a1i B On C On c = C x B c x F x = y B if y = C 1 𝑜 x x B c x F x = y B if y = C 1 𝑜 x
124 eldif x B suc C x B ¬ x suc C
125 simplr B On C On c = C x B c = C
126 125 eleq1d B On C On c = C x B c x C x
127 simpl B On C On B On
128 127 adantr B On C On c = C B On
129 onelon B On x B x On
130 128 129 sylan B On C On c = C x B x On
131 simpllr B On C On c = C x B C On
132 ontri1 x On C On x C ¬ C x
133 130 131 132 syl2anc B On C On c = C x B x C ¬ C x
134 133 con2bid B On C On c = C x B C x ¬ x C
135 onsssuc x On C On x C x suc C
136 130 131 135 syl2anc B On C On c = C x B x C x suc C
137 136 notbid B On C On c = C x B ¬ x C ¬ x suc C
138 126 134 137 3bitrrd B On C On c = C x B ¬ x suc C c x
139 138 pm5.32da B On C On c = C x B ¬ x suc C x B c x
140 124 139 bitrid B On C On c = C x B suc C x B c x
141 140 biimpd B On C On c = C x B suc C x B c x
142 141 imim1d B On C On c = C x B c x F x = y B if y = C 1 𝑜 x x B suc C F x = y B if y = C 1 𝑜 x
143 eldifi x B suc C x B
144 143 adantl B On C On c = C x B suc C x B
145 eqeq1 y = x y = C x = C
146 145 ifbid y = x if y = C 1 𝑜 = if x = C 1 𝑜
147 89 43 ifex if x = C 1 𝑜 V
148 146 16 147 fvmpt x B y B if y = C 1 𝑜 x = if x = C 1 𝑜
149 144 148 syl B On C On c = C x B suc C y B if y = C 1 𝑜 x = if x = C 1 𝑜
150 128 143 129 syl2an B On C On c = C x B suc C x On
151 eloni x On Ord x
152 150 151 syl B On C On c = C x B suc C Ord x
153 eloni B On Ord B
154 153 ad2antrr B On C On c = C Ord B
155 simplr B On C On c = C C On
156 ordeldifsucon Ord B C On x B suc C x B C x
157 154 155 156 syl2anc B On C On c = C x B suc C x B C x
158 157 biimpa B On C On c = C x B suc C x B C x
159 ordirr Ord x ¬ x x
160 eleq1 x = C x x C x
161 160 notbid x = C ¬ x x ¬ C x
162 159 161 syl5ibcom Ord x x = C ¬ C x
163 162 con2d Ord x C x ¬ x = C
164 163 adantld Ord x x B C x ¬ x = C
165 152 158 164 sylc B On C On c = C x B suc C ¬ x = C
166 165 iffalsed B On C On c = C x B suc C if x = C 1 𝑜 =
167 149 166 eqtrd B On C On c = C x B suc C y B if y = C 1 𝑜 x =
168 167 eqeq2d B On C On c = C x B suc C F x = y B if y = C 1 𝑜 x F x =
169 168 biimpd B On C On c = C x B suc C F x = y B if y = C 1 𝑜 x F x =
170 169 ex B On C On c = C x B suc C F x = y B if y = C 1 𝑜 x F x =
171 170 a2d B On C On c = C x B suc C F x = y B if y = C 1 𝑜 x x B suc C F x =
172 123 142 171 3syld B On C On c = C x B c x F x = y B if y = C 1 𝑜 x x B suc C F x =
173 172 ralimdv2 B On C On c = C x B c x F x = y B if y = C 1 𝑜 x x B suc C F x =
174 121 173 sylan A On 2 𝑜 B On C On C B c = C x B c x F x = y B if y = C 1 𝑜 x x B suc C F x =
175 174 adantr A On 2 𝑜 B On C On C B c = C x C F x = x B c x F x = y B if y = C 1 𝑜 x x B suc C F x =
176 ralun x C F x = x B suc C F x = x C B suc C F x =
177 176 adantll A On 2 𝑜 B On C On C B c = C x C F x = x B suc C F x = x C B suc C F x =
178 undif3 C B suc C = C B suc C C
179 simpr C On C B C B
180 179 snssd C On C B C B
181 ssequn1 C B C B = B
182 180 181 sylib C On C B C B = B
183 simpl C On C B C On
184 eloni C On Ord C
185 orddif Ord C C = suc C C
186 183 184 185 3syl C On C B C = suc C C
187 186 eqcomd C On C B suc C C = C
188 182 187 difeq12d C On C B C B suc C C = B C
189 178 188 eqtrid C On C B C B suc C = B C
190 189 adantll A On 2 𝑜 B On C On C B C B suc C = B C
191 190 adantr A On 2 𝑜 B On C On C B c = C C B suc C = B C
192 191 raleqdv A On 2 𝑜 B On C On C B c = C x C B suc C F x = x B C F x =
193 192 ad2antrr A On 2 𝑜 B On C On C B c = C x C F x = x B suc C F x = x C B suc C F x = x B C F x =
194 177 193 mpbid A On 2 𝑜 B On C On C B c = C x C F x = x B suc C F x = x B C F x =
195 194 ex A On 2 𝑜 B On C On C B c = C x C F x = x B suc C F x = x B C F x =
196 175 195 syld A On 2 𝑜 B On C On C B c = C x C F x = x B c x F x = y B if y = C 1 𝑜 x x B C F x =
197 196 expl A On 2 𝑜 B On C On C B c = C x C F x = x B c x F x = y B if y = C 1 𝑜 x x B C F x =
198 114 119 197 3syld A On 2 𝑜 B On C On C B c B F c y B if y = C 1 𝑜 c x B c x F x = y B if y = C 1 𝑜 x x B C F x =
199 198 expdimp A On 2 𝑜 B On C On C B c B F c y B if y = C 1 𝑜 c x B c x F x = y B if y = C 1 𝑜 x x B C F x =
200 199 impd A On 2 𝑜 B On C On C B c B F c y B if y = C 1 𝑜 c x B c x F x = y B if y = C 1 𝑜 x x B C F x =
201 200 rexlimdva A On 2 𝑜 B On C On C B c B F c y B if y = C 1 𝑜 c x B c x F x = y B if y = C 1 𝑜 x x B C F x =
202 201 adantld A On 2 𝑜 B On C On C B F V y B if y = C 1 𝑜 V c B F c y B if y = C 1 𝑜 c x B c x F x = y B if y = C 1 𝑜 x x B C F x =
203 84 202 biimtrid A On 2 𝑜 B On C On C B F a b | c B a c b c x B c x a x = b x y B if y = C 1 𝑜 x B C F x =
204 203 adantlrr A On 2 𝑜 B On C On F dom A CNF B C B F a b | c B a c b c x B c x a x = b x y B if y = C 1 𝑜 x B C F x =
205 67 204 sylbid A On 2 𝑜 B On C On F dom A CNF B C B A CNF B F A 𝑜 C x B C F x =
206 205 ex A On 2 𝑜 B On C On F dom A CNF B C B A CNF B F A 𝑜 C x B C F x =
207 ral0 x F x =
208 ssdif0 B C B C =
209 208 biimpi B C B C =
210 209 raleqdv B C x B C F x = x F x =
211 207 210 mpbiri B C x B C F x =
212 211 a1i13 A On 2 𝑜 B On C On F dom A CNF B B C A CNF B F A 𝑜 C x B C F x =
213 184 adantr C On F dom A CNF B Ord C
214 153 adantl A On 2 𝑜 B On Ord B
215 ordtri2or Ord C Ord B C B B C
216 213 214 215 syl2anr A On 2 𝑜 B On C On F dom A CNF B C B B C
217 206 212 216 mpjaod A On 2 𝑜 B On C On F dom A CNF B A CNF B F A 𝑜 C x B C F x =
218 3 ad2antrr A On 2 𝑜 B On C On F dom A CNF B x B C F x = A On
219 simpllr A On 2 𝑜 B On C On F dom A CNF B x B C F x = B On
220 simplrr A On 2 𝑜 B On C On F dom A CNF B x B C F x = F dom A CNF B
221 15 ad2antrr A On 2 𝑜 B On C On F dom A CNF B x B C F x = A
222 simplrl A On 2 𝑜 B On C On F dom A CNF B x B C F x = C On
223 1 3 4 cantnfs A On 2 𝑜 B On F dom A CNF B F : B A finSupp F
224 223 biimpd A On 2 𝑜 B On F dom A CNF B F : B A finSupp F
225 224 adantld A On 2 𝑜 B On C On F dom A CNF B F : B A finSupp F
226 225 imp A On 2 𝑜 B On C On F dom A CNF B F : B A finSupp F
227 226 simpld A On 2 𝑜 B On C On F dom A CNF B F : B A
228 227 adantr A On 2 𝑜 B On C On F dom A CNF B x B C F x = F : B A
229 fveqeq2 x = y F x = F y =
230 229 rspccv x B C F x = y B C F y =
231 230 adantl A On 2 𝑜 B On C On F dom A CNF B x B C F x = y B C F y =
232 231 imp A On 2 𝑜 B On C On F dom A CNF B x B C F x = y B C F y =
233 228 232 suppss A On 2 𝑜 B On C On F dom A CNF B x B C F x = F supp C
234 1 218 219 220 221 222 233 cantnflt2 A On 2 𝑜 B On C On F dom A CNF B x B C F x = A CNF B F A 𝑜 C
235 234 ex A On 2 𝑜 B On C On F dom A CNF B x B C F x = A CNF B F A 𝑜 C
236 217 235 impbid A On 2 𝑜 B On C On F dom A CNF B A CNF B F A 𝑜 C x B C F x =