| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eldifi |
|
| 3 |
2
|
adantr |
|
| 4 |
|
simpr |
|
| 5 |
|
eqid |
|
| 6 |
1 3 4 5
|
cantnf |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpr |
|
| 9 |
|
ondif2 |
|
| 10 |
9
|
simprbi |
|
| 11 |
|
dif20el |
|
| 12 |
10 11
|
ifcld |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
13
|
fmpttd |
|
| 15 |
11
|
adantr |
|
| 16 |
|
eqid |
|
| 17 |
4 15 16
|
sniffsupp |
|
| 18 |
1 3 4
|
cantnfs |
|
| 19 |
14 17 18
|
mpbir2and |
|
| 20 |
19
|
adantr |
|
| 21 |
|
isorel |
|
| 22 |
7 8 20 21
|
syl12anc |
|
| 23 |
22
|
adantrl |
|
| 24 |
23
|
adantr |
|
| 25 |
|
fvexd |
|
| 26 |
|
epelg |
|
| 27 |
25 26
|
syl |
|
| 28 |
2
|
ad2antrr |
|
| 29 |
|
simplr |
|
| 30 |
|
fconst6g |
|
| 31 |
11 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
4 15
|
fczfsuppd |
|
| 34 |
1 3 4
|
cantnfs |
|
| 35 |
32 33 34
|
mpbir2and |
|
| 36 |
35
|
adantr |
|
| 37 |
|
simpr |
|
| 38 |
10
|
ad2antrr |
|
| 39 |
|
fczsupp0 |
|
| 40 |
|
0ss |
|
| 41 |
39 40
|
eqsstri |
|
| 42 |
41
|
a1i |
|
| 43 |
|
0ex |
|
| 44 |
43
|
fvconst2 |
|
| 45 |
44
|
ifeq2d |
|
| 46 |
45
|
mpteq2ia |
|
| 47 |
46
|
eqcomi |
|
| 48 |
1 28 29 36 37 38 42 47
|
cantnfp1 |
|
| 49 |
48
|
simprd |
|
| 50 |
49
|
adantrl |
|
| 51 |
|
oecl |
|
| 52 |
3 51
|
sylan |
|
| 53 |
|
om1 |
|
| 54 |
52 53
|
syl |
|
| 55 |
1 3 4 15
|
cantnf0 |
|
| 56 |
55
|
adantr |
|
| 57 |
54 56
|
oveq12d |
|
| 58 |
|
oa0 |
|
| 59 |
52 58
|
syl |
|
| 60 |
57 59
|
eqtrd |
|
| 61 |
60
|
adantrr |
|
| 62 |
50 61
|
eqtrd |
|
| 63 |
62
|
eleq2d |
|
| 64 |
63
|
exp32 |
|
| 65 |
64
|
adantrd |
|
| 66 |
65
|
imp31 |
|
| 67 |
24 27 66
|
3bitrrd |
|
| 68 |
|
fveq1 |
|
| 69 |
68
|
eleq1d |
|
| 70 |
|
fveq1 |
|
| 71 |
70
|
eqeq1d |
|
| 72 |
71
|
imbi2d |
|
| 73 |
72
|
ralbidv |
|
| 74 |
69 73
|
anbi12d |
|
| 75 |
74
|
rexbidv |
|
| 76 |
|
fveq1 |
|
| 77 |
76
|
eleq2d |
|
| 78 |
|
fveq1 |
|
| 79 |
78
|
eqeq2d |
|
| 80 |
79
|
imbi2d |
|
| 81 |
80
|
ralbidv |
|
| 82 |
77 81
|
anbi12d |
|
| 83 |
82
|
rexbidv |
|
| 84 |
75 83 5
|
bropabg |
|
| 85 |
|
fveq2 |
|
| 86 |
85
|
adantr |
|
| 87 |
|
eqeq1 |
|
| 88 |
87
|
ifbid |
|
| 89 |
|
1oex |
|
| 90 |
89 43
|
ifex |
|
| 91 |
88 16 90
|
fvmpt |
|
| 92 |
|
iftrue |
|
| 93 |
91 92
|
sylan9eqr |
|
| 94 |
86 93
|
eleq12d |
|
| 95 |
|
el1o |
|
| 96 |
95
|
a1i |
|
| 97 |
96
|
biimpd |
|
| 98 |
|
simpl |
|
| 99 |
97 98
|
jctild |
|
| 100 |
94 99
|
sylbid |
|
| 101 |
100
|
expimpd |
|
| 102 |
91
|
adantl |
|
| 103 |
|
simpl |
|
| 104 |
103
|
neneqd |
|
| 105 |
104
|
iffalsed |
|
| 106 |
102 105
|
eqtrd |
|
| 107 |
106
|
eleq2d |
|
| 108 |
107
|
biimpd |
|
| 109 |
108
|
expimpd |
|
| 110 |
|
noel |
|
| 111 |
110
|
pm2.21i |
|
| 112 |
109 111
|
syl6 |
|
| 113 |
101 112
|
pm2.61ine |
|
| 114 |
113
|
a1i |
|
| 115 |
|
fveqeq2 |
|
| 116 |
115
|
ralsng |
|
| 117 |
116
|
anbi2d |
|
| 118 |
117
|
biimprd |
|
| 119 |
118
|
adantl |
|
| 120 |
4
|
anim1i |
|
| 121 |
120
|
adantr |
|
| 122 |
|
pm3.31 |
|
| 123 |
122
|
a1i |
|
| 124 |
|
eldif |
|
| 125 |
|
simplr |
|
| 126 |
125
|
eleq1d |
|
| 127 |
|
simpl |
|
| 128 |
127
|
adantr |
|
| 129 |
|
onelon |
|
| 130 |
128 129
|
sylan |
|
| 131 |
|
simpllr |
|
| 132 |
|
ontri1 |
|
| 133 |
130 131 132
|
syl2anc |
|
| 134 |
133
|
con2bid |
|
| 135 |
|
onsssuc |
|
| 136 |
130 131 135
|
syl2anc |
|
| 137 |
136
|
notbid |
|
| 138 |
126 134 137
|
3bitrrd |
|
| 139 |
138
|
pm5.32da |
|
| 140 |
124 139
|
bitrid |
|
| 141 |
140
|
biimpd |
|
| 142 |
141
|
imim1d |
|
| 143 |
|
eldifi |
|
| 144 |
143
|
adantl |
|
| 145 |
|
eqeq1 |
|
| 146 |
145
|
ifbid |
|
| 147 |
89 43
|
ifex |
|
| 148 |
146 16 147
|
fvmpt |
|
| 149 |
144 148
|
syl |
|
| 150 |
128 143 129
|
syl2an |
|
| 151 |
|
eloni |
|
| 152 |
150 151
|
syl |
|
| 153 |
|
eloni |
|
| 154 |
153
|
ad2antrr |
|
| 155 |
|
simplr |
|
| 156 |
|
ordeldifsucon |
|
| 157 |
154 155 156
|
syl2anc |
|
| 158 |
157
|
biimpa |
|
| 159 |
|
ordirr |
|
| 160 |
|
eleq1 |
|
| 161 |
160
|
notbid |
|
| 162 |
159 161
|
syl5ibcom |
|
| 163 |
162
|
con2d |
|
| 164 |
163
|
adantld |
|
| 165 |
152 158 164
|
sylc |
|
| 166 |
165
|
iffalsed |
|
| 167 |
149 166
|
eqtrd |
|
| 168 |
167
|
eqeq2d |
|
| 169 |
168
|
biimpd |
|
| 170 |
169
|
ex |
|
| 171 |
170
|
a2d |
|
| 172 |
123 142 171
|
3syld |
|
| 173 |
172
|
ralimdv2 |
|
| 174 |
121 173
|
sylan |
|
| 175 |
174
|
adantr |
|
| 176 |
|
ralun |
|
| 177 |
176
|
adantll |
|
| 178 |
|
undif3 |
|
| 179 |
|
simpr |
|
| 180 |
179
|
snssd |
|
| 181 |
|
ssequn1 |
|
| 182 |
180 181
|
sylib |
|
| 183 |
|
simpl |
|
| 184 |
|
eloni |
|
| 185 |
|
orddif |
|
| 186 |
183 184 185
|
3syl |
|
| 187 |
186
|
eqcomd |
|
| 188 |
182 187
|
difeq12d |
|
| 189 |
178 188
|
eqtrid |
|
| 190 |
189
|
adantll |
|
| 191 |
190
|
adantr |
|
| 192 |
191
|
raleqdv |
|
| 193 |
192
|
ad2antrr |
|
| 194 |
177 193
|
mpbid |
|
| 195 |
194
|
ex |
|
| 196 |
175 195
|
syld |
|
| 197 |
196
|
expl |
|
| 198 |
114 119 197
|
3syld |
|
| 199 |
198
|
expdimp |
|
| 200 |
199
|
impd |
|
| 201 |
200
|
rexlimdva |
|
| 202 |
201
|
adantld |
|
| 203 |
84 202
|
biimtrid |
|
| 204 |
203
|
adantlrr |
|
| 205 |
67 204
|
sylbid |
|
| 206 |
205
|
ex |
|
| 207 |
|
ral0 |
|
| 208 |
|
ssdif0 |
|
| 209 |
208
|
biimpi |
|
| 210 |
209
|
raleqdv |
|
| 211 |
207 210
|
mpbiri |
|
| 212 |
211
|
a1i13 |
|
| 213 |
184
|
adantr |
|
| 214 |
153
|
adantl |
|
| 215 |
|
ordtri2or |
|
| 216 |
213 214 215
|
syl2anr |
|
| 217 |
206 212 216
|
mpjaod |
|
| 218 |
3
|
ad2antrr |
|
| 219 |
|
simpllr |
|
| 220 |
|
simplrr |
|
| 221 |
15
|
ad2antrr |
|
| 222 |
|
simplrl |
|
| 223 |
1 3 4
|
cantnfs |
|
| 224 |
223
|
biimpd |
|
| 225 |
224
|
adantld |
|
| 226 |
225
|
imp |
|
| 227 |
226
|
simpld |
|
| 228 |
227
|
adantr |
|
| 229 |
|
fveqeq2 |
|
| 230 |
229
|
rspccv |
|
| 231 |
230
|
adantl |
|
| 232 |
231
|
imp |
|
| 233 |
228 232
|
suppss |
|
| 234 |
1 218 219 220 221 222 233
|
cantnflt2 |
|
| 235 |
234
|
ex |
|
| 236 |
217 235
|
impbid |
|