Metamath Proof Explorer


Theorem cantnfresb

Description: A Cantor normal form which sums to less than a certain power has only zeros for larger components. (Contributed by RP, 3-Feb-2025)

Ref Expression
Assertion cantnfresb AOn2𝑜BOnCOnFdomACNFBACNFBFA𝑜CxBCFx=

Proof

Step Hyp Ref Expression
1 eqid domACNFB=domACNFB
2 eldifi AOn2𝑜AOn
3 2 adantr AOn2𝑜BOnAOn
4 simpr AOn2𝑜BOnBOn
5 eqid ab|cBacbcxBcxax=bx=ab|cBacbcxBcxax=bx
6 1 3 4 5 cantnf AOn2𝑜BOnACNFBIsomab|cBacbcxBcxax=bx,EdomACNFBA𝑜B
7 6 adantr AOn2𝑜BOnFdomACNFBACNFBIsomab|cBacbcxBcxax=bx,EdomACNFBA𝑜B
8 simpr AOn2𝑜BOnFdomACNFBFdomACNFB
9 ondif2 AOn2𝑜AOn1𝑜A
10 9 simprbi AOn2𝑜1𝑜A
11 dif20el AOn2𝑜A
12 10 11 ifcld AOn2𝑜ify=C1𝑜A
13 12 ad2antrr AOn2𝑜BOnyBify=C1𝑜A
14 13 fmpttd AOn2𝑜BOnyBify=C1𝑜:BA
15 11 adantr AOn2𝑜BOnA
16 eqid yBify=C1𝑜=yBify=C1𝑜
17 4 15 16 sniffsupp AOn2𝑜BOnfinSuppyBify=C1𝑜
18 1 3 4 cantnfs AOn2𝑜BOnyBify=C1𝑜domACNFByBify=C1𝑜:BAfinSuppyBify=C1𝑜
19 14 17 18 mpbir2and AOn2𝑜BOnyBify=C1𝑜domACNFB
20 19 adantr AOn2𝑜BOnFdomACNFByBify=C1𝑜domACNFB
21 isorel ACNFBIsomab|cBacbcxBcxax=bx,EdomACNFBA𝑜BFdomACNFByBify=C1𝑜domACNFBFab|cBacbcxBcxax=bxyBify=C1𝑜ACNFBFEACNFByBify=C1𝑜
22 7 8 20 21 syl12anc AOn2𝑜BOnFdomACNFBFab|cBacbcxBcxax=bxyBify=C1𝑜ACNFBFEACNFByBify=C1𝑜
23 22 adantrl AOn2𝑜BOnCOnFdomACNFBFab|cBacbcxBcxax=bxyBify=C1𝑜ACNFBFEACNFByBify=C1𝑜
24 23 adantr AOn2𝑜BOnCOnFdomACNFBCBFab|cBacbcxBcxax=bxyBify=C1𝑜ACNFBFEACNFByBify=C1𝑜
25 fvexd AOn2𝑜BOnCOnFdomACNFBCBACNFByBify=C1𝑜V
26 epelg ACNFByBify=C1𝑜VACNFBFEACNFByBify=C1𝑜ACNFBFACNFByBify=C1𝑜
27 25 26 syl AOn2𝑜BOnCOnFdomACNFBCBACNFBFEACNFByBify=C1𝑜ACNFBFACNFByBify=C1𝑜
28 2 ad2antrr AOn2𝑜BOnCBAOn
29 simplr AOn2𝑜BOnCBBOn
30 fconst6g AB×:BA
31 11 30 syl AOn2𝑜B×:BA
32 31 adantr AOn2𝑜BOnB×:BA
33 4 15 fczfsuppd AOn2𝑜BOnfinSuppB×
34 1 3 4 cantnfs AOn2𝑜BOnB×domACNFBB×:BAfinSuppB×
35 32 33 34 mpbir2and AOn2𝑜BOnB×domACNFB
36 35 adantr AOn2𝑜BOnCBB×domACNFB
37 simpr AOn2𝑜BOnCBCB
38 10 ad2antrr AOn2𝑜BOnCB1𝑜A
39 fczsupp0 B×supp=
40 0ss C
41 39 40 eqsstri B×suppC
42 41 a1i AOn2𝑜BOnCBB×suppC
43 0ex V
44 43 fvconst2 yBB×y=
45 44 ifeq2d yBify=C1𝑜B×y=ify=C1𝑜
46 45 mpteq2ia yBify=C1𝑜B×y=yBify=C1𝑜
47 46 eqcomi yBify=C1𝑜=yBify=C1𝑜B×y
48 1 28 29 36 37 38 42 47 cantnfp1 AOn2𝑜BOnCByBify=C1𝑜domACNFBACNFByBify=C1𝑜=A𝑜C𝑜1𝑜+𝑜ACNFBB×
49 48 simprd AOn2𝑜BOnCBACNFByBify=C1𝑜=A𝑜C𝑜1𝑜+𝑜ACNFBB×
50 49 adantrl AOn2𝑜BOnCOnCBACNFByBify=C1𝑜=A𝑜C𝑜1𝑜+𝑜ACNFBB×
51 oecl AOnCOnA𝑜COn
52 3 51 sylan AOn2𝑜BOnCOnA𝑜COn
53 om1 A𝑜COnA𝑜C𝑜1𝑜=A𝑜C
54 52 53 syl AOn2𝑜BOnCOnA𝑜C𝑜1𝑜=A𝑜C
55 1 3 4 15 cantnf0 AOn2𝑜BOnACNFBB×=
56 55 adantr AOn2𝑜BOnCOnACNFBB×=
57 54 56 oveq12d AOn2𝑜BOnCOnA𝑜C𝑜1𝑜+𝑜ACNFBB×=A𝑜C+𝑜
58 oa0 A𝑜COnA𝑜C+𝑜=A𝑜C
59 52 58 syl AOn2𝑜BOnCOnA𝑜C+𝑜=A𝑜C
60 57 59 eqtrd AOn2𝑜BOnCOnA𝑜C𝑜1𝑜+𝑜ACNFBB×=A𝑜C
61 60 adantrr AOn2𝑜BOnCOnCBA𝑜C𝑜1𝑜+𝑜ACNFBB×=A𝑜C
62 50 61 eqtrd AOn2𝑜BOnCOnCBACNFByBify=C1𝑜=A𝑜C
63 62 eleq2d AOn2𝑜BOnCOnCBACNFBFACNFByBify=C1𝑜ACNFBFA𝑜C
64 63 exp32 AOn2𝑜BOnCOnCBACNFBFACNFByBify=C1𝑜ACNFBFA𝑜C
65 64 adantrd AOn2𝑜BOnCOnFdomACNFBCBACNFBFACNFByBify=C1𝑜ACNFBFA𝑜C
66 65 imp31 AOn2𝑜BOnCOnFdomACNFBCBACNFBFACNFByBify=C1𝑜ACNFBFA𝑜C
67 24 27 66 3bitrrd AOn2𝑜BOnCOnFdomACNFBCBACNFBFA𝑜CFab|cBacbcxBcxax=bxyBify=C1𝑜
68 fveq1 a=Fac=Fc
69 68 eleq1d a=FacbcFcbc
70 fveq1 a=Fax=Fx
71 70 eqeq1d a=Fax=bxFx=bx
72 71 imbi2d a=Fcxax=bxcxFx=bx
73 72 ralbidv a=FxBcxax=bxxBcxFx=bx
74 69 73 anbi12d a=FacbcxBcxax=bxFcbcxBcxFx=bx
75 74 rexbidv a=FcBacbcxBcxax=bxcBFcbcxBcxFx=bx
76 fveq1 b=yBify=C1𝑜bc=yBify=C1𝑜c
77 76 eleq2d b=yBify=C1𝑜FcbcFcyBify=C1𝑜c
78 fveq1 b=yBify=C1𝑜bx=yBify=C1𝑜x
79 78 eqeq2d b=yBify=C1𝑜Fx=bxFx=yBify=C1𝑜x
80 79 imbi2d b=yBify=C1𝑜cxFx=bxcxFx=yBify=C1𝑜x
81 80 ralbidv b=yBify=C1𝑜xBcxFx=bxxBcxFx=yBify=C1𝑜x
82 77 81 anbi12d b=yBify=C1𝑜FcbcxBcxFx=bxFcyBify=C1𝑜cxBcxFx=yBify=C1𝑜x
83 82 rexbidv b=yBify=C1𝑜cBFcbcxBcxFx=bxcBFcyBify=C1𝑜cxBcxFx=yBify=C1𝑜x
84 75 83 5 bropabg Fab|cBacbcxBcxax=bxyBify=C1𝑜FVyBify=C1𝑜VcBFcyBify=C1𝑜cxBcxFx=yBify=C1𝑜x
85 fveq2 c=CFc=FC
86 85 adantr c=CcBFc=FC
87 eqeq1 y=cy=Cc=C
88 87 ifbid y=cify=C1𝑜=ifc=C1𝑜
89 1oex 1𝑜V
90 89 43 ifex ifc=C1𝑜V
91 88 16 90 fvmpt cByBify=C1𝑜c=ifc=C1𝑜
92 iftrue c=Cifc=C1𝑜=1𝑜
93 91 92 sylan9eqr c=CcByBify=C1𝑜c=1𝑜
94 86 93 eleq12d c=CcBFcyBify=C1𝑜cFC1𝑜
95 el1o FC1𝑜FC=
96 95 a1i c=CcBFC1𝑜FC=
97 96 biimpd c=CcBFC1𝑜FC=
98 simpl c=CcBc=C
99 97 98 jctild c=CcBFC1𝑜c=CFC=
100 94 99 sylbid c=CcBFcyBify=C1𝑜cc=CFC=
101 100 expimpd c=CcBFcyBify=C1𝑜cc=CFC=
102 91 adantl cCcByBify=C1𝑜c=ifc=C1𝑜
103 simpl cCcBcC
104 103 neneqd cCcB¬c=C
105 104 iffalsed cCcBifc=C1𝑜=
106 102 105 eqtrd cCcByBify=C1𝑜c=
107 106 eleq2d cCcBFcyBify=C1𝑜cFc
108 107 biimpd cCcBFcyBify=C1𝑜cFc
109 108 expimpd cCcBFcyBify=C1𝑜cFc
110 noel ¬Fc
111 110 pm2.21i Fcc=CFC=
112 109 111 syl6 cCcBFcyBify=C1𝑜cc=CFC=
113 101 112 pm2.61ine cBFcyBify=C1𝑜cc=CFC=
114 113 a1i AOn2𝑜BOnCOnCBcBFcyBify=C1𝑜cc=CFC=
115 fveqeq2 x=CFx=FC=
116 115 ralsng CBxCFx=FC=
117 116 anbi2d CBc=CxCFx=c=CFC=
118 117 biimprd CBc=CFC=c=CxCFx=
119 118 adantl AOn2𝑜BOnCOnCBc=CFC=c=CxCFx=
120 4 anim1i AOn2𝑜BOnCOnBOnCOn
121 120 adantr AOn2𝑜BOnCOnCBBOnCOn
122 pm3.31 xBcxFx=yBify=C1𝑜xxBcxFx=yBify=C1𝑜x
123 122 a1i BOnCOnc=CxBcxFx=yBify=C1𝑜xxBcxFx=yBify=C1𝑜x
124 eldif xBsucCxB¬xsucC
125 simplr BOnCOnc=CxBc=C
126 125 eleq1d BOnCOnc=CxBcxCx
127 simpl BOnCOnBOn
128 127 adantr BOnCOnc=CBOn
129 onelon BOnxBxOn
130 128 129 sylan BOnCOnc=CxBxOn
131 simpllr BOnCOnc=CxBCOn
132 ontri1 xOnCOnxC¬Cx
133 130 131 132 syl2anc BOnCOnc=CxBxC¬Cx
134 133 con2bid BOnCOnc=CxBCx¬xC
135 onsssuc xOnCOnxCxsucC
136 130 131 135 syl2anc BOnCOnc=CxBxCxsucC
137 136 notbid BOnCOnc=CxB¬xC¬xsucC
138 126 134 137 3bitrrd BOnCOnc=CxB¬xsucCcx
139 138 pm5.32da BOnCOnc=CxB¬xsucCxBcx
140 124 139 bitrid BOnCOnc=CxBsucCxBcx
141 140 biimpd BOnCOnc=CxBsucCxBcx
142 141 imim1d BOnCOnc=CxBcxFx=yBify=C1𝑜xxBsucCFx=yBify=C1𝑜x
143 eldifi xBsucCxB
144 143 adantl BOnCOnc=CxBsucCxB
145 eqeq1 y=xy=Cx=C
146 145 ifbid y=xify=C1𝑜=ifx=C1𝑜
147 89 43 ifex ifx=C1𝑜V
148 146 16 147 fvmpt xByBify=C1𝑜x=ifx=C1𝑜
149 144 148 syl BOnCOnc=CxBsucCyBify=C1𝑜x=ifx=C1𝑜
150 128 143 129 syl2an BOnCOnc=CxBsucCxOn
151 eloni xOnOrdx
152 150 151 syl BOnCOnc=CxBsucCOrdx
153 eloni BOnOrdB
154 153 ad2antrr BOnCOnc=COrdB
155 simplr BOnCOnc=CCOn
156 ordeldifsucon OrdBCOnxBsucCxBCx
157 154 155 156 syl2anc BOnCOnc=CxBsucCxBCx
158 157 biimpa BOnCOnc=CxBsucCxBCx
159 ordirr Ordx¬xx
160 eleq1 x=CxxCx
161 160 notbid x=C¬xx¬Cx
162 159 161 syl5ibcom Ordxx=C¬Cx
163 162 con2d OrdxCx¬x=C
164 163 adantld OrdxxBCx¬x=C
165 152 158 164 sylc BOnCOnc=CxBsucC¬x=C
166 165 iffalsed BOnCOnc=CxBsucCifx=C1𝑜=
167 149 166 eqtrd BOnCOnc=CxBsucCyBify=C1𝑜x=
168 167 eqeq2d BOnCOnc=CxBsucCFx=yBify=C1𝑜xFx=
169 168 biimpd BOnCOnc=CxBsucCFx=yBify=C1𝑜xFx=
170 169 ex BOnCOnc=CxBsucCFx=yBify=C1𝑜xFx=
171 170 a2d BOnCOnc=CxBsucCFx=yBify=C1𝑜xxBsucCFx=
172 123 142 171 3syld BOnCOnc=CxBcxFx=yBify=C1𝑜xxBsucCFx=
173 172 ralimdv2 BOnCOnc=CxBcxFx=yBify=C1𝑜xxBsucCFx=
174 121 173 sylan AOn2𝑜BOnCOnCBc=CxBcxFx=yBify=C1𝑜xxBsucCFx=
175 174 adantr AOn2𝑜BOnCOnCBc=CxCFx=xBcxFx=yBify=C1𝑜xxBsucCFx=
176 ralun xCFx=xBsucCFx=xCBsucCFx=
177 176 adantll AOn2𝑜BOnCOnCBc=CxCFx=xBsucCFx=xCBsucCFx=
178 undif3 CBsucC=CBsucCC
179 simpr COnCBCB
180 179 snssd COnCBCB
181 ssequn1 CBCB=B
182 180 181 sylib COnCBCB=B
183 simpl COnCBCOn
184 eloni COnOrdC
185 orddif OrdCC=sucCC
186 183 184 185 3syl COnCBC=sucCC
187 186 eqcomd COnCBsucCC=C
188 182 187 difeq12d COnCBCBsucCC=BC
189 178 188 eqtrid COnCBCBsucC=BC
190 189 adantll AOn2𝑜BOnCOnCBCBsucC=BC
191 190 adantr AOn2𝑜BOnCOnCBc=CCBsucC=BC
192 191 raleqdv AOn2𝑜BOnCOnCBc=CxCBsucCFx=xBCFx=
193 192 ad2antrr AOn2𝑜BOnCOnCBc=CxCFx=xBsucCFx=xCBsucCFx=xBCFx=
194 177 193 mpbid AOn2𝑜BOnCOnCBc=CxCFx=xBsucCFx=xBCFx=
195 194 ex AOn2𝑜BOnCOnCBc=CxCFx=xBsucCFx=xBCFx=
196 175 195 syld AOn2𝑜BOnCOnCBc=CxCFx=xBcxFx=yBify=C1𝑜xxBCFx=
197 196 expl AOn2𝑜BOnCOnCBc=CxCFx=xBcxFx=yBify=C1𝑜xxBCFx=
198 114 119 197 3syld AOn2𝑜BOnCOnCBcBFcyBify=C1𝑜cxBcxFx=yBify=C1𝑜xxBCFx=
199 198 expdimp AOn2𝑜BOnCOnCBcBFcyBify=C1𝑜cxBcxFx=yBify=C1𝑜xxBCFx=
200 199 impd AOn2𝑜BOnCOnCBcBFcyBify=C1𝑜cxBcxFx=yBify=C1𝑜xxBCFx=
201 200 rexlimdva AOn2𝑜BOnCOnCBcBFcyBify=C1𝑜cxBcxFx=yBify=C1𝑜xxBCFx=
202 201 adantld AOn2𝑜BOnCOnCBFVyBify=C1𝑜VcBFcyBify=C1𝑜cxBcxFx=yBify=C1𝑜xxBCFx=
203 84 202 biimtrid AOn2𝑜BOnCOnCBFab|cBacbcxBcxax=bxyBify=C1𝑜xBCFx=
204 203 adantlrr AOn2𝑜BOnCOnFdomACNFBCBFab|cBacbcxBcxax=bxyBify=C1𝑜xBCFx=
205 67 204 sylbid AOn2𝑜BOnCOnFdomACNFBCBACNFBFA𝑜CxBCFx=
206 205 ex AOn2𝑜BOnCOnFdomACNFBCBACNFBFA𝑜CxBCFx=
207 ral0 xFx=
208 ssdif0 BCBC=
209 208 biimpi BCBC=
210 209 raleqdv BCxBCFx=xFx=
211 207 210 mpbiri BCxBCFx=
212 211 a1i13 AOn2𝑜BOnCOnFdomACNFBBCACNFBFA𝑜CxBCFx=
213 184 adantr COnFdomACNFBOrdC
214 153 adantl AOn2𝑜BOnOrdB
215 ordtri2or OrdCOrdBCBBC
216 213 214 215 syl2anr AOn2𝑜BOnCOnFdomACNFBCBBC
217 206 212 216 mpjaod AOn2𝑜BOnCOnFdomACNFBACNFBFA𝑜CxBCFx=
218 3 ad2antrr AOn2𝑜BOnCOnFdomACNFBxBCFx=AOn
219 simpllr AOn2𝑜BOnCOnFdomACNFBxBCFx=BOn
220 simplrr AOn2𝑜BOnCOnFdomACNFBxBCFx=FdomACNFB
221 15 ad2antrr AOn2𝑜BOnCOnFdomACNFBxBCFx=A
222 simplrl AOn2𝑜BOnCOnFdomACNFBxBCFx=COn
223 1 3 4 cantnfs AOn2𝑜BOnFdomACNFBF:BAfinSuppF
224 223 biimpd AOn2𝑜BOnFdomACNFBF:BAfinSuppF
225 224 adantld AOn2𝑜BOnCOnFdomACNFBF:BAfinSuppF
226 225 imp AOn2𝑜BOnCOnFdomACNFBF:BAfinSuppF
227 226 simpld AOn2𝑜BOnCOnFdomACNFBF:BA
228 227 adantr AOn2𝑜BOnCOnFdomACNFBxBCFx=F:BA
229 fveqeq2 x=yFx=Fy=
230 229 rspccv xBCFx=yBCFy=
231 230 adantl AOn2𝑜BOnCOnFdomACNFBxBCFx=yBCFy=
232 231 imp AOn2𝑜BOnCOnFdomACNFBxBCFx=yBCFy=
233 228 232 suppss AOn2𝑜BOnCOnFdomACNFBxBCFx=FsuppC
234 1 218 219 220 221 222 233 cantnflt2 AOn2𝑜BOnCOnFdomACNFBxBCFx=ACNFBFA𝑜C
235 234 ex AOn2𝑜BOnCOnFdomACNFBxBCFx=ACNFBFA𝑜C
236 217 235 impbid AOn2𝑜BOnCOnFdomACNFBACNFBFA𝑜CxBCFx=