| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ dom ( 𝐴 CNF 𝐵 ) = dom ( 𝐴 CNF 𝐵 ) |
| 2 |
|
eldifi |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
| 4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → 𝐵 ∈ On ) |
| 5 |
|
eqid |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } |
| 6 |
1 3 4 5
|
cantnf |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝐴 CNF 𝐵 ) Isom { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } , E ( dom ( 𝐴 CNF 𝐵 ) , ( 𝐴 ↑o 𝐵 ) ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) → ( 𝐴 CNF 𝐵 ) Isom { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } , E ( dom ( 𝐴 CNF 𝐵 ) , ( 𝐴 ↑o 𝐵 ) ) ) |
| 8 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) → 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) |
| 9 |
|
ondif2 |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) |
| 10 |
9
|
simprbi |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 1o ∈ 𝐴 ) |
| 11 |
|
dif20el |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) |
| 12 |
10 11
|
ifcld |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → if ( 𝑦 = 𝐶 , 1o , ∅ ) ∈ 𝐴 ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑦 = 𝐶 , 1o , ∅ ) ∈ 𝐴 ) |
| 14 |
13
|
fmpttd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) : 𝐵 ⟶ 𝐴 ) |
| 15 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ∅ ∈ 𝐴 ) |
| 16 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) |
| 17 |
4 15 16
|
sniffsupp |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) finSupp ∅ ) |
| 18 |
1 3 4
|
cantnfs |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ∈ dom ( 𝐴 CNF 𝐵 ) ↔ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) finSupp ∅ ) ) ) |
| 19 |
14 17 18
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ∈ dom ( 𝐴 CNF 𝐵 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ∈ dom ( 𝐴 CNF 𝐵 ) ) |
| 21 |
|
isorel |
⊢ ( ( ( 𝐴 CNF 𝐵 ) Isom { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } , E ( dom ( 𝐴 CNF 𝐵 ) , ( 𝐴 ↑o 𝐵 ) ) ∧ ( 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐹 { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) E ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ) ) |
| 22 |
7 8 20 21
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) → ( 𝐹 { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) E ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ) ) |
| 23 |
22
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐹 { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) E ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) E ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ) ) |
| 25 |
|
fvexd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ∈ V ) |
| 26 |
|
epelg |
⊢ ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ∈ V → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) E ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝐶 ∈ 𝐵 ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) E ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ) ) |
| 28 |
2
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ On ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → 𝐵 ∈ On ) |
| 30 |
|
fconst6g |
⊢ ( ∅ ∈ 𝐴 → ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ) |
| 31 |
11 30
|
syl |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ) |
| 33 |
4 15
|
fczfsuppd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝐵 × { ∅ } ) finSupp ∅ ) |
| 34 |
1 3 4
|
cantnfs |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( ( 𝐵 × { ∅ } ) ∈ dom ( 𝐴 CNF 𝐵 ) ↔ ( ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ∧ ( 𝐵 × { ∅ } ) finSupp ∅ ) ) ) |
| 35 |
32 33 34
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝐵 × { ∅ } ) ∈ dom ( 𝐴 CNF 𝐵 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐵 × { ∅ } ) ∈ dom ( 𝐴 CNF 𝐵 ) ) |
| 37 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
| 38 |
10
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → 1o ∈ 𝐴 ) |
| 39 |
|
fczsupp0 |
⊢ ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ |
| 40 |
|
0ss |
⊢ ∅ ⊆ 𝐶 |
| 41 |
39 40
|
eqsstri |
⊢ ( ( 𝐵 × { ∅ } ) supp ∅ ) ⊆ 𝐶 |
| 42 |
41
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐵 × { ∅ } ) supp ∅ ) ⊆ 𝐶 ) |
| 43 |
|
0ex |
⊢ ∅ ∈ V |
| 44 |
43
|
fvconst2 |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝐵 × { ∅ } ) ‘ 𝑦 ) = ∅ ) |
| 45 |
44
|
ifeq2d |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = 𝐶 , 1o , ( ( 𝐵 × { ∅ } ) ‘ 𝑦 ) ) = if ( 𝑦 = 𝐶 , 1o , ∅ ) ) |
| 46 |
45
|
mpteq2ia |
⊢ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ( ( 𝐵 × { ∅ } ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) |
| 47 |
46
|
eqcomi |
⊢ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ( ( 𝐵 × { ∅ } ) ‘ 𝑦 ) ) ) |
| 48 |
1 28 29 36 37 38 42 47
|
cantnfp1 |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ∈ dom ( 𝐴 CNF 𝐵 ) ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) ) ) ) |
| 49 |
48
|
simprd |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) ) ) |
| 50 |
49
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) ) ) |
| 51 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
| 52 |
3 51
|
sylan |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
| 53 |
|
om1 |
⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) = ( 𝐴 ↑o 𝐶 ) ) |
| 54 |
52 53
|
syl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) = ( 𝐴 ↑o 𝐶 ) ) |
| 55 |
1 3 4 15
|
cantnf0 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) = ∅ ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) = ∅ ) |
| 57 |
54 56
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) ) = ( ( 𝐴 ↑o 𝐶 ) +o ∅ ) ) |
| 58 |
|
oa0 |
⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → ( ( 𝐴 ↑o 𝐶 ) +o ∅ ) = ( 𝐴 ↑o 𝐶 ) ) |
| 59 |
52 58
|
syl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) +o ∅ ) = ( 𝐴 ↑o 𝐶 ) ) |
| 60 |
57 59
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) ) = ( 𝐴 ↑o 𝐶 ) ) |
| 61 |
60
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) ) = ( 𝐴 ↑o 𝐶 ) ) |
| 62 |
50 61
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) = ( 𝐴 ↑o 𝐶 ) ) |
| 63 |
62
|
eleq2d |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 64 |
63
|
exp32 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ On → ( 𝐶 ∈ 𝐵 → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) ) ) |
| 65 |
64
|
adantrd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) → ( 𝐶 ∈ 𝐵 → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) ) ) |
| 66 |
65
|
imp31 |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝐶 ∈ 𝐵 ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 67 |
24 27 66
|
3bitrrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝐶 ∈ 𝐵 ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ↔ 𝐹 { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ) ) |
| 68 |
|
fveq1 |
⊢ ( 𝑎 = 𝐹 → ( 𝑎 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 69 |
68
|
eleq1d |
⊢ ( 𝑎 = 𝐹 → ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ) ) |
| 70 |
|
fveq1 |
⊢ ( 𝑎 = 𝐹 → ( 𝑎 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 71 |
70
|
eqeq1d |
⊢ ( 𝑎 = 𝐹 → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 72 |
71
|
imbi2d |
⊢ ( 𝑎 = 𝐹 → ( ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ↔ ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 73 |
72
|
ralbidv |
⊢ ( 𝑎 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 74 |
69 73
|
anbi12d |
⊢ ( 𝑎 = 𝐹 → ( ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) ) |
| 75 |
74
|
rexbidv |
⊢ ( 𝑎 = 𝐹 → ( ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ↔ ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) ) |
| 76 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ( 𝑏 ‘ 𝑐 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ) |
| 77 |
76
|
eleq2d |
⊢ ( 𝑏 = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ) ) |
| 78 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ( 𝑏 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) |
| 79 |
78
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) |
| 80 |
79
|
imbi2d |
⊢ ( 𝑏 = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ( ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ↔ ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) ) |
| 81 |
80
|
ralbidv |
⊢ ( 𝑏 = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) ) |
| 82 |
77 81
|
anbi12d |
⊢ ( 𝑏 = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ( ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) ) ) |
| 83 |
82
|
rexbidv |
⊢ ( 𝑏 = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ( ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ↔ ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) ) ) |
| 84 |
75 83 5
|
bropabg |
⊢ ( 𝐹 { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ↔ ( ( 𝐹 ∈ V ∧ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ∈ V ) ∧ ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) ) ) |
| 85 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝐶 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝐶 ) ) |
| 87 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑐 → ( 𝑦 = 𝐶 ↔ 𝑐 = 𝐶 ) ) |
| 88 |
87
|
ifbid |
⊢ ( 𝑦 = 𝑐 → if ( 𝑦 = 𝐶 , 1o , ∅ ) = if ( 𝑐 = 𝐶 , 1o , ∅ ) ) |
| 89 |
|
1oex |
⊢ 1o ∈ V |
| 90 |
89 43
|
ifex |
⊢ if ( 𝑐 = 𝐶 , 1o , ∅ ) ∈ V |
| 91 |
88 16 90
|
fvmpt |
⊢ ( 𝑐 ∈ 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) = if ( 𝑐 = 𝐶 , 1o , ∅ ) ) |
| 92 |
|
iftrue |
⊢ ( 𝑐 = 𝐶 → if ( 𝑐 = 𝐶 , 1o , ∅ ) = 1o ) |
| 93 |
91 92
|
sylan9eqr |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) = 1o ) |
| 94 |
86 93
|
eleq12d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝐶 ) ∈ 1o ) ) |
| 95 |
|
el1o |
⊢ ( ( 𝐹 ‘ 𝐶 ) ∈ 1o ↔ ( 𝐹 ‘ 𝐶 ) = ∅ ) |
| 96 |
95
|
a1i |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ 1o ↔ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) |
| 97 |
96
|
biimpd |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ 1o → ( 𝐹 ‘ 𝐶 ) = ∅ ) ) |
| 98 |
|
simpl |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑐 ∈ 𝐵 ) → 𝑐 = 𝐶 ) |
| 99 |
97 98
|
jctild |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ 1o → ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) ) |
| 100 |
94 99
|
sylbid |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) → ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) ) |
| 101 |
100
|
expimpd |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ) → ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) ) |
| 102 |
91
|
adantl |
⊢ ( ( 𝑐 ≠ 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) = if ( 𝑐 = 𝐶 , 1o , ∅ ) ) |
| 103 |
|
simpl |
⊢ ( ( 𝑐 ≠ 𝐶 ∧ 𝑐 ∈ 𝐵 ) → 𝑐 ≠ 𝐶 ) |
| 104 |
103
|
neneqd |
⊢ ( ( 𝑐 ≠ 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ¬ 𝑐 = 𝐶 ) |
| 105 |
104
|
iffalsed |
⊢ ( ( 𝑐 ≠ 𝐶 ∧ 𝑐 ∈ 𝐵 ) → if ( 𝑐 = 𝐶 , 1o , ∅ ) = ∅ ) |
| 106 |
102 105
|
eqtrd |
⊢ ( ( 𝑐 ≠ 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) = ∅ ) |
| 107 |
106
|
eleq2d |
⊢ ( ( 𝑐 ≠ 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑐 ) ∈ ∅ ) ) |
| 108 |
107
|
biimpd |
⊢ ( ( 𝑐 ≠ 𝐶 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) → ( 𝐹 ‘ 𝑐 ) ∈ ∅ ) ) |
| 109 |
108
|
expimpd |
⊢ ( 𝑐 ≠ 𝐶 → ( ( 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ∅ ) ) |
| 110 |
|
noel |
⊢ ¬ ( 𝐹 ‘ 𝑐 ) ∈ ∅ |
| 111 |
110
|
pm2.21i |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ∅ → ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) |
| 112 |
109 111
|
syl6 |
⊢ ( 𝑐 ≠ 𝐶 → ( ( 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ) → ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) ) |
| 113 |
101 112
|
pm2.61ine |
⊢ ( ( 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ) → ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) |
| 114 |
113
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ) → ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) ) |
| 115 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) |
| 116 |
115
|
ralsng |
⊢ ( 𝐶 ∈ 𝐵 → ( ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) |
| 117 |
116
|
anbi2d |
⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝑐 = 𝐶 ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) ↔ ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) ) ) |
| 118 |
117
|
biimprd |
⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) → ( 𝑐 = 𝐶 ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 119 |
118
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝑐 = 𝐶 ∧ ( 𝐹 ‘ 𝐶 ) = ∅ ) → ( 𝑐 = 𝐶 ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 120 |
4
|
anim1i |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) |
| 121 |
120
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) |
| 122 |
|
pm3.31 |
⊢ ( ( 𝑥 ∈ 𝐵 → ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑐 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) |
| 123 |
122
|
a1i |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( ( 𝑥 ∈ 𝐵 → ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑐 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) ) |
| 124 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ suc 𝐶 ) ) |
| 125 |
|
simplr |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑐 = 𝐶 ) |
| 126 |
125
|
eleq1d |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑐 ∈ 𝑥 ↔ 𝐶 ∈ 𝑥 ) ) |
| 127 |
|
simpl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐵 ∈ On ) |
| 128 |
127
|
adantr |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → 𝐵 ∈ On ) |
| 129 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 130 |
128 129
|
sylan |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 131 |
|
simpllr |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ On ) |
| 132 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ 𝐶 ∈ On ) → ( 𝑥 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝑥 ) ) |
| 133 |
130 131 132
|
syl2anc |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝑥 ) ) |
| 134 |
133
|
con2bid |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐶 ∈ 𝑥 ↔ ¬ 𝑥 ⊆ 𝐶 ) ) |
| 135 |
|
onsssuc |
⊢ ( ( 𝑥 ∈ On ∧ 𝐶 ∈ On ) → ( 𝑥 ⊆ 𝐶 ↔ 𝑥 ∈ suc 𝐶 ) ) |
| 136 |
130 131 135
|
syl2anc |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ 𝐶 ↔ 𝑥 ∈ suc 𝐶 ) ) |
| 137 |
136
|
notbid |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ⊆ 𝐶 ↔ ¬ 𝑥 ∈ suc 𝐶 ) ) |
| 138 |
126 134 137
|
3bitrrd |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ suc 𝐶 ↔ 𝑐 ∈ 𝑥 ) ) |
| 139 |
138
|
pm5.32da |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ suc 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑐 ∈ 𝑥 ) ) ) |
| 140 |
124 139
|
bitrid |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑐 ∈ 𝑥 ) ) ) |
| 141 |
140
|
biimpd |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑐 ∈ 𝑥 ) ) ) |
| 142 |
141
|
imim1d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑐 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) → ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) ) |
| 143 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) → 𝑥 ∈ 𝐵 ) |
| 144 |
143
|
adantl |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → 𝑥 ∈ 𝐵 ) |
| 145 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = 𝐶 ↔ 𝑥 = 𝐶 ) ) |
| 146 |
145
|
ifbid |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = 𝐶 , 1o , ∅ ) = if ( 𝑥 = 𝐶 , 1o , ∅ ) ) |
| 147 |
89 43
|
ifex |
⊢ if ( 𝑥 = 𝐶 , 1o , ∅ ) ∈ V |
| 148 |
146 16 147
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) = if ( 𝑥 = 𝐶 , 1o , ∅ ) ) |
| 149 |
144 148
|
syl |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) = if ( 𝑥 = 𝐶 , 1o , ∅ ) ) |
| 150 |
128 143 129
|
syl2an |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → 𝑥 ∈ On ) |
| 151 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
| 152 |
150 151
|
syl |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → Ord 𝑥 ) |
| 153 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
| 154 |
153
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → Ord 𝐵 ) |
| 155 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → 𝐶 ∈ On ) |
| 156 |
|
ordeldifsucon |
⊢ ( ( Ord 𝐵 ∧ 𝐶 ∈ On ) → ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝑥 ) ) ) |
| 157 |
154 155 156
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝑥 ) ) ) |
| 158 |
157
|
biimpa |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝑥 ) ) |
| 159 |
|
ordirr |
⊢ ( Ord 𝑥 → ¬ 𝑥 ∈ 𝑥 ) |
| 160 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝑥 ↔ 𝐶 ∈ 𝑥 ) ) |
| 161 |
160
|
notbid |
⊢ ( 𝑥 = 𝐶 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝐶 ∈ 𝑥 ) ) |
| 162 |
159 161
|
syl5ibcom |
⊢ ( Ord 𝑥 → ( 𝑥 = 𝐶 → ¬ 𝐶 ∈ 𝑥 ) ) |
| 163 |
162
|
con2d |
⊢ ( Ord 𝑥 → ( 𝐶 ∈ 𝑥 → ¬ 𝑥 = 𝐶 ) ) |
| 164 |
163
|
adantld |
⊢ ( Ord 𝑥 → ( ( 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝑥 ) → ¬ 𝑥 = 𝐶 ) ) |
| 165 |
152 158 164
|
sylc |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → ¬ 𝑥 = 𝐶 ) |
| 166 |
165
|
iffalsed |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → if ( 𝑥 = 𝐶 , 1o , ∅ ) = ∅ ) |
| 167 |
149 166
|
eqtrd |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) = ∅ ) |
| 168 |
167
|
eqeq2d |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 169 |
168
|
biimpd |
⊢ ( ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 170 |
169
|
ex |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) → ( ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 171 |
170
|
a2d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) → ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 172 |
123 142 171
|
3syld |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( ( 𝑥 ∈ 𝐵 → ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 173 |
172
|
ralimdv2 |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑐 = 𝐶 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 174 |
121 173
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 = 𝐶 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 175 |
174
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 = 𝐶 ) ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 176 |
|
ralun |
⊢ ( ( ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → ∀ 𝑥 ∈ ( { 𝐶 } ∪ ( 𝐵 ∖ suc 𝐶 ) ) ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 177 |
176
|
adantll |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 = 𝐶 ) ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → ∀ 𝑥 ∈ ( { 𝐶 } ∪ ( 𝐵 ∖ suc 𝐶 ) ) ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 178 |
|
undif3 |
⊢ ( { 𝐶 } ∪ ( 𝐵 ∖ suc 𝐶 ) ) = ( ( { 𝐶 } ∪ 𝐵 ) ∖ ( suc 𝐶 ∖ { 𝐶 } ) ) |
| 179 |
|
simpr |
⊢ ( ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
| 180 |
179
|
snssd |
⊢ ( ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) → { 𝐶 } ⊆ 𝐵 ) |
| 181 |
|
ssequn1 |
⊢ ( { 𝐶 } ⊆ 𝐵 ↔ ( { 𝐶 } ∪ 𝐵 ) = 𝐵 ) |
| 182 |
180 181
|
sylib |
⊢ ( ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) → ( { 𝐶 } ∪ 𝐵 ) = 𝐵 ) |
| 183 |
|
simpl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ On ) |
| 184 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
| 185 |
|
orddif |
⊢ ( Ord 𝐶 → 𝐶 = ( suc 𝐶 ∖ { 𝐶 } ) ) |
| 186 |
183 184 185
|
3syl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) → 𝐶 = ( suc 𝐶 ∖ { 𝐶 } ) ) |
| 187 |
186
|
eqcomd |
⊢ ( ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) → ( suc 𝐶 ∖ { 𝐶 } ) = 𝐶 ) |
| 188 |
182 187
|
difeq12d |
⊢ ( ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) → ( ( { 𝐶 } ∪ 𝐵 ) ∖ ( suc 𝐶 ∖ { 𝐶 } ) ) = ( 𝐵 ∖ 𝐶 ) ) |
| 189 |
178 188
|
eqtrid |
⊢ ( ( 𝐶 ∈ On ∧ 𝐶 ∈ 𝐵 ) → ( { 𝐶 } ∪ ( 𝐵 ∖ suc 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) ) |
| 190 |
189
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( { 𝐶 } ∪ ( 𝐵 ∖ suc 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) ) |
| 191 |
190
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 = 𝐶 ) → ( { 𝐶 } ∪ ( 𝐵 ∖ suc 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) ) |
| 192 |
191
|
raleqdv |
⊢ ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 = 𝐶 ) → ( ∀ 𝑥 ∈ ( { 𝐶 } ∪ ( 𝐵 ∖ suc 𝐶 ) ) ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 193 |
192
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 = 𝐶 ) ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → ( ∀ 𝑥 ∈ ( { 𝐶 } ∪ ( 𝐵 ∖ suc 𝐶 ) ) ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 194 |
177 193
|
mpbid |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 = 𝐶 ) ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 195 |
194
|
ex |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 = 𝐶 ) ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) → ( ∀ 𝑥 ∈ ( 𝐵 ∖ suc 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 196 |
175 195
|
syld |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 = 𝐶 ) ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 197 |
196
|
expl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝑐 = 𝐶 ∧ ∀ 𝑥 ∈ { 𝐶 } ( 𝐹 ‘ 𝑥 ) = ∅ ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 198 |
114 119 197
|
3syld |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 199 |
198
|
expdimp |
⊢ ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 200 |
199
|
impd |
⊢ ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 201 |
200
|
rexlimdva |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 202 |
201
|
adantld |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( ( ( 𝐹 ∈ V ∧ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ∈ V ) ∧ ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 203 |
84 202
|
biimtrid |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 204 |
203
|
adantlrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝐵 ( ( 𝑎 ‘ 𝑐 ) ∈ ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑐 ∈ 𝑥 → ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) } ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = 𝐶 , 1o , ∅ ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 205 |
67 204
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝐶 ∈ 𝐵 ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 206 |
205
|
ex |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐶 ∈ 𝐵 → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 207 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ( 𝐹 ‘ 𝑥 ) = ∅ |
| 208 |
|
ssdif0 |
⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐵 ∖ 𝐶 ) = ∅ ) |
| 209 |
208
|
biimpi |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐵 ∖ 𝐶 ) = ∅ ) |
| 210 |
209
|
raleqdv |
⊢ ( 𝐵 ⊆ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ∀ 𝑥 ∈ ∅ ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 211 |
207 210
|
mpbiri |
⊢ ( 𝐵 ⊆ 𝐶 → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 212 |
211
|
a1i13 |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐵 ⊆ 𝐶 → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) ) |
| 213 |
184
|
adantr |
⊢ ( ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) → Ord 𝐶 ) |
| 214 |
153
|
adantl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → Ord 𝐵 ) |
| 215 |
|
ordtri2or |
⊢ ( ( Ord 𝐶 ∧ Ord 𝐵 ) → ( 𝐶 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐶 ) ) |
| 216 |
213 214 215
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐶 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐶 ) ) |
| 217 |
206 212 216
|
mpjaod |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 218 |
3
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → 𝐴 ∈ On ) |
| 219 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → 𝐵 ∈ On ) |
| 220 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) |
| 221 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → ∅ ∈ 𝐴 ) |
| 222 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → 𝐶 ∈ On ) |
| 223 |
1 3 4
|
cantnfs |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 224 |
223
|
biimpd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 225 |
224
|
adantld |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 226 |
225
|
imp |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
| 227 |
226
|
simpld |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 228 |
227
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 229 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ( 𝐹 ‘ 𝑦 ) = ∅ ) ) |
| 230 |
229
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ → ( 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) → ( 𝐹 ‘ 𝑦 ) = ∅ ) ) |
| 231 |
230
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → ( 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) → ( 𝐹 ‘ 𝑦 ) = ∅ ) ) |
| 232 |
231
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) → ( 𝐹 ‘ 𝑦 ) = ∅ ) |
| 233 |
228 232
|
suppss |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → ( 𝐹 supp ∅ ) ⊆ 𝐶 ) |
| 234 |
1 218 219 220 221 222 233
|
cantnflt2 |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 235 |
234
|
ex |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 236 |
217 235
|
impbid |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐹 ∈ dom ( 𝐴 CNF 𝐵 ) ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( 𝐴 ↑o 𝐶 ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |