Step |
Hyp |
Ref |
Expression |
1 |
|
onexoegt |
⊢ ( 𝐴 ∈ On → ∃ 𝑏 ∈ On 𝐴 ∈ ( ω ↑o 𝑏 ) ) |
2 |
|
eldif |
⊢ ( 𝑐 ∈ ( On ∖ 𝑏 ) ↔ ( 𝑐 ∈ On ∧ ¬ 𝑐 ∈ 𝑏 ) ) |
3 |
|
simp2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) → 𝑏 ∈ On ) |
4 |
|
pm3.2 |
⊢ ( 𝑏 ∈ On → ( 𝑐 ∈ On → ( 𝑏 ∈ On ∧ 𝑐 ∈ On ) ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) → ( 𝑐 ∈ On → ( 𝑏 ∈ On ∧ 𝑐 ∈ On ) ) ) |
6 |
|
ontri1 |
⊢ ( ( 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( 𝑏 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ 𝑏 ) ) |
7 |
5 6
|
syl6 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) → ( 𝑐 ∈ On → ( 𝑏 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ 𝑏 ) ) ) |
8 |
7
|
pm5.32d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) → ( ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ↔ ( 𝑐 ∈ On ∧ ¬ 𝑐 ∈ 𝑏 ) ) ) |
9 |
2 8
|
bitr4id |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) → ( 𝑐 ∈ ( On ∖ 𝑏 ) ↔ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ) |
10 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑎 = 𝐴 ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → 𝑎 = 𝐴 ) |
11 |
10
|
breq2d |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑎 = 𝐴 ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → ( 𝑓 ( ω CNF 𝑐 ) 𝑎 ↔ 𝑓 ( ω CNF 𝑐 ) 𝐴 ) ) |
12 |
|
eqid |
⊢ dom ( ω CNF 𝑐 ) = dom ( ω CNF 𝑐 ) |
13 |
|
omelon |
⊢ ω ∈ On |
14 |
13
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑎 = 𝐴 ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → ω ∈ On ) |
15 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → 𝑐 ∈ On ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑎 = 𝐴 ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → 𝑐 ∈ On ) |
17 |
12 14 16
|
cantnff1o |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑎 = 𝐴 ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → ( ω CNF 𝑐 ) : dom ( ω CNF 𝑐 ) –1-1-onto→ ( ω ↑o 𝑐 ) ) |
18 |
|
f1ofun |
⊢ ( ( ω CNF 𝑐 ) : dom ( ω CNF 𝑐 ) –1-1-onto→ ( ω ↑o 𝑐 ) → Fun ( ω CNF 𝑐 ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑎 = 𝐴 ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → Fun ( ω CNF 𝑐 ) ) |
20 |
|
funbrfvb |
⊢ ( ( Fun ( ω CNF 𝑐 ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → ( ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ↔ 𝑓 ( ω CNF 𝑐 ) 𝐴 ) ) |
21 |
19 20
|
sylancom |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑎 = 𝐴 ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → ( ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ↔ 𝑓 ( ω CNF 𝑐 ) 𝐴 ) ) |
22 |
11 21
|
bitr4d |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑎 = 𝐴 ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → ( 𝑓 ( ω CNF 𝑐 ) 𝑎 ↔ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) |
23 |
22
|
reubidva |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑎 = 𝐴 ) → ( ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) 𝑓 ( ω CNF 𝑐 ) 𝑎 ↔ ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) |
24 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → 𝑏 ∈ On ) |
25 |
13
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ω ∈ On ) |
26 |
24 15 25
|
3jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ( 𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On ) ) |
27 |
|
peano1 |
⊢ ∅ ∈ ω |
28 |
26 27
|
jctir |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ( ( 𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) ) |
29 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → 𝑏 ⊆ 𝑐 ) |
30 |
|
oewordi |
⊢ ( ( ( 𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( 𝑏 ⊆ 𝑐 → ( ω ↑o 𝑏 ) ⊆ ( ω ↑o 𝑐 ) ) ) |
31 |
28 29 30
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ( ω ↑o 𝑏 ) ⊆ ( ω ↑o 𝑐 ) ) |
32 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → 𝐴 ∈ ( ω ↑o 𝑏 ) ) |
33 |
31 32
|
sseldd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → 𝐴 ∈ ( ω ↑o 𝑐 ) ) |
34 |
12 25 15
|
cantnff1o |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ( ω CNF 𝑐 ) : dom ( ω CNF 𝑐 ) –1-1-onto→ ( ω ↑o 𝑐 ) ) |
35 |
|
dff1o5 |
⊢ ( ( ω CNF 𝑐 ) : dom ( ω CNF 𝑐 ) –1-1-onto→ ( ω ↑o 𝑐 ) ↔ ( ( ω CNF 𝑐 ) : dom ( ω CNF 𝑐 ) –1-1→ ( ω ↑o 𝑐 ) ∧ ran ( ω CNF 𝑐 ) = ( ω ↑o 𝑐 ) ) ) |
36 |
|
simpr |
⊢ ( ( ( ω CNF 𝑐 ) : dom ( ω CNF 𝑐 ) –1-1→ ( ω ↑o 𝑐 ) ∧ ran ( ω CNF 𝑐 ) = ( ω ↑o 𝑐 ) ) → ran ( ω CNF 𝑐 ) = ( ω ↑o 𝑐 ) ) |
37 |
35 36
|
sylbi |
⊢ ( ( ω CNF 𝑐 ) : dom ( ω CNF 𝑐 ) –1-1-onto→ ( ω ↑o 𝑐 ) → ran ( ω CNF 𝑐 ) = ( ω ↑o 𝑐 ) ) |
38 |
34 37
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ran ( ω CNF 𝑐 ) = ( ω ↑o 𝑐 ) ) |
39 |
33 38
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → 𝐴 ∈ ran ( ω CNF 𝑐 ) ) |
40 |
|
dff1o2 |
⊢ ( ( ω CNF 𝑐 ) : dom ( ω CNF 𝑐 ) –1-1-onto→ ( ω ↑o 𝑐 ) ↔ ( ( ω CNF 𝑐 ) Fn dom ( ω CNF 𝑐 ) ∧ Fun ◡ ( ω CNF 𝑐 ) ∧ ran ( ω CNF 𝑐 ) = ( ω ↑o 𝑐 ) ) ) |
41 |
|
simp2 |
⊢ ( ( ( ω CNF 𝑐 ) Fn dom ( ω CNF 𝑐 ) ∧ Fun ◡ ( ω CNF 𝑐 ) ∧ ran ( ω CNF 𝑐 ) = ( ω ↑o 𝑐 ) ) → Fun ◡ ( ω CNF 𝑐 ) ) |
42 |
40 41
|
sylbi |
⊢ ( ( ω CNF 𝑐 ) : dom ( ω CNF 𝑐 ) –1-1-onto→ ( ω ↑o 𝑐 ) → Fun ◡ ( ω CNF 𝑐 ) ) |
43 |
34 42
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → Fun ◡ ( ω CNF 𝑐 ) ) |
44 |
|
funcnv3 |
⊢ ( Fun ◡ ( ω CNF 𝑐 ) ↔ ∀ 𝑎 ∈ ran ( ω CNF 𝑐 ) ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) 𝑓 ( ω CNF 𝑐 ) 𝑎 ) |
45 |
43 44
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ∀ 𝑎 ∈ ran ( ω CNF 𝑐 ) ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) 𝑓 ( ω CNF 𝑐 ) 𝑎 ) |
46 |
23 39 45
|
rspcdv2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) |
47 |
32
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → 𝐴 ∈ ( ω ↑o 𝑏 ) ) |
48 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → 𝑓 ∈ dom ( ω CNF 𝑐 ) ) |
49 |
13
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ω ∈ On ) |
50 |
15
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → 𝑐 ∈ On ) |
51 |
12 49 50
|
cantnfs |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( 𝑓 ∈ dom ( ω CNF 𝑐 ) ↔ ( 𝑓 : 𝑐 ⟶ ω ∧ 𝑓 finSupp ∅ ) ) ) |
52 |
48 51
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( 𝑓 : 𝑐 ⟶ ω ∧ 𝑓 finSupp ∅ ) ) |
53 |
|
simpr |
⊢ ( ( 𝑓 : 𝑐 ⟶ ω ∧ 𝑓 finSupp ∅ ) → 𝑓 finSupp ∅ ) |
54 |
52 53
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → 𝑓 finSupp ∅ ) |
55 |
|
eqid |
⊢ dom ( ω CNF 𝑏 ) = dom ( ω CNF 𝑏 ) |
56 |
24
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → 𝑏 ∈ On ) |
57 |
29
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → 𝑏 ⊆ 𝑐 ) |
58 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) |
59 |
58 47
|
eqeltrd |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( ( ω CNF 𝑐 ) ‘ 𝑓 ) ∈ ( ω ↑o 𝑏 ) ) |
60 |
|
1onn |
⊢ 1o ∈ ω |
61 |
|
ondif2 |
⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) |
62 |
13 60 61
|
mpbir2an |
⊢ ω ∈ ( On ∖ 2o ) |
63 |
62
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ω ∈ ( On ∖ 2o ) ) |
64 |
|
cantnfresb |
⊢ ( ( ( ω ∈ ( On ∖ 2o ) ∧ 𝑐 ∈ On ) ∧ ( 𝑏 ∈ On ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ) → ( ( ( ω CNF 𝑐 ) ‘ 𝑓 ) ∈ ( ω ↑o 𝑏 ) ↔ ∀ 𝑑 ∈ ( 𝑐 ∖ 𝑏 ) ( 𝑓 ‘ 𝑑 ) = ∅ ) ) |
65 |
63 50 56 48 64
|
syl22anc |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( ( ( ω CNF 𝑐 ) ‘ 𝑓 ) ∈ ( ω ↑o 𝑏 ) ↔ ∀ 𝑑 ∈ ( 𝑐 ∖ 𝑏 ) ( 𝑓 ‘ 𝑑 ) = ∅ ) ) |
66 |
59 65
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ∀ 𝑑 ∈ ( 𝑐 ∖ 𝑏 ) ( 𝑓 ‘ 𝑑 ) = ∅ ) |
67 |
66
|
r19.21bi |
⊢ ( ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ∧ 𝑑 ∈ ( 𝑐 ∖ 𝑏 ) ) → ( 𝑓 ‘ 𝑑 ) = ∅ ) |
68 |
27
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ∅ ∈ ω ) |
69 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ∧ 𝑑 ∈ 𝑏 ) → 𝑓 ∈ dom ( ω CNF 𝑐 ) ) |
70 |
13
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ∧ 𝑑 ∈ 𝑏 ) → ω ∈ On ) |
71 |
15
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → 𝑐 ∈ On ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ∧ 𝑑 ∈ 𝑏 ) → 𝑐 ∈ On ) |
73 |
12 70 72
|
cantnfs |
⊢ ( ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ∧ 𝑑 ∈ 𝑏 ) → ( 𝑓 ∈ dom ( ω CNF 𝑐 ) ↔ ( 𝑓 : 𝑐 ⟶ ω ∧ 𝑓 finSupp ∅ ) ) ) |
74 |
69 73
|
mpbid |
⊢ ( ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ∧ 𝑑 ∈ 𝑏 ) → ( 𝑓 : 𝑐 ⟶ ω ∧ 𝑓 finSupp ∅ ) ) |
75 |
74
|
simpld |
⊢ ( ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ∧ 𝑑 ∈ 𝑏 ) → 𝑓 : 𝑐 ⟶ ω ) |
76 |
57
|
sselda |
⊢ ( ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ∧ 𝑑 ∈ 𝑏 ) → 𝑑 ∈ 𝑐 ) |
77 |
75 76
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ∧ 𝑑 ∈ 𝑏 ) → ( 𝑓 ‘ 𝑑 ) ∈ ω ) |
78 |
77
|
fmpttd |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( 𝑑 ∈ 𝑏 ↦ ( 𝑓 ‘ 𝑑 ) ) : 𝑏 ⟶ ω ) |
79 |
12 25 15
|
cantnfs |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ( 𝑓 ∈ dom ( ω CNF 𝑐 ) ↔ ( 𝑓 : 𝑐 ⟶ ω ∧ 𝑓 finSupp ∅ ) ) ) |
80 |
79
|
simprbda |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → 𝑓 : 𝑐 ⟶ ω ) |
81 |
80
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → 𝑓 : 𝑐 ⟶ ω ) |
82 |
81 57
|
feqresmpt |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( 𝑓 ↾ 𝑏 ) = ( 𝑑 ∈ 𝑏 ↦ ( 𝑓 ‘ 𝑑 ) ) ) |
83 |
54 68
|
fsuppres |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( 𝑓 ↾ 𝑏 ) finSupp ∅ ) |
84 |
82 83
|
eqbrtrrd |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( 𝑑 ∈ 𝑏 ↦ ( 𝑓 ‘ 𝑑 ) ) finSupp ∅ ) |
85 |
55 49 56
|
cantnfs |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( ( 𝑑 ∈ 𝑏 ↦ ( 𝑓 ‘ 𝑑 ) ) ∈ dom ( ω CNF 𝑏 ) ↔ ( ( 𝑑 ∈ 𝑏 ↦ ( 𝑓 ‘ 𝑑 ) ) : 𝑏 ⟶ ω ∧ ( 𝑑 ∈ 𝑏 ↦ ( 𝑓 ‘ 𝑑 ) ) finSupp ∅ ) ) ) |
86 |
78 84 85
|
mpbir2and |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( 𝑑 ∈ 𝑏 ↦ ( 𝑓 ‘ 𝑑 ) ) ∈ dom ( ω CNF 𝑏 ) ) |
87 |
55 49 56 50 57 67 68 12 86
|
cantnfres |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( ( ω CNF 𝑏 ) ‘ ( 𝑑 ∈ 𝑏 ↦ ( 𝑓 ‘ 𝑑 ) ) ) = ( ( ω CNF 𝑐 ) ‘ ( 𝑑 ∈ 𝑐 ↦ ( 𝑓 ‘ 𝑑 ) ) ) ) |
88 |
82
|
fveq2d |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = ( ( ω CNF 𝑏 ) ‘ ( 𝑑 ∈ 𝑏 ↦ ( 𝑓 ‘ 𝑑 ) ) ) ) |
89 |
81
|
feqmptd |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → 𝑓 = ( 𝑑 ∈ 𝑐 ↦ ( 𝑓 ‘ 𝑑 ) ) ) |
90 |
89
|
fveq2d |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = ( ( ω CNF 𝑐 ) ‘ ( 𝑑 ∈ 𝑐 ↦ ( 𝑓 ‘ 𝑑 ) ) ) ) |
91 |
87 88 90
|
3eqtr4d |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = ( ( ω CNF 𝑐 ) ‘ 𝑓 ) ) |
92 |
91 58
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ) |
93 |
47 54 92
|
3jca |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) → ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ∧ ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ) ) |
94 |
93
|
ex |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → ( ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 → ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ∧ ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ) ) ) |
95 |
94
|
pm4.71rd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → ( ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ↔ ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ∧ ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) |
96 |
|
3an4anass |
⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ∧ ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ) ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ↔ ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) |
97 |
95 96
|
bitrdi |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) ∧ 𝑓 ∈ dom ( ω CNF 𝑐 ) ) → ( ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ↔ ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) ) |
98 |
97
|
reubidva |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ( ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ↔ ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) ) |
99 |
46 98
|
mpbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) ∧ ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) ) → ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) |
100 |
99
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) → ( ( 𝑐 ∈ On ∧ 𝑏 ⊆ 𝑐 ) → ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) ) |
101 |
9 100
|
sylbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) → ( 𝑐 ∈ ( On ∖ 𝑏 ) → ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) ) |
102 |
101
|
ralrimiv |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝑏 ) ) → ∀ 𝑐 ∈ ( On ∖ 𝑏 ) ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) |
103 |
102
|
3exp |
⊢ ( 𝐴 ∈ On → ( 𝑏 ∈ On → ( 𝐴 ∈ ( ω ↑o 𝑏 ) → ∀ 𝑐 ∈ ( On ∖ 𝑏 ) ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) ) ) |
104 |
103
|
reximdvai |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑏 ∈ On 𝐴 ∈ ( ω ↑o 𝑏 ) → ∃ 𝑏 ∈ On ∀ 𝑐 ∈ ( On ∖ 𝑏 ) ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) ) |
105 |
1 104
|
mpd |
⊢ ( 𝐴 ∈ On → ∃ 𝑏 ∈ On ∀ 𝑐 ∈ ( On ∖ 𝑏 ) ∃! 𝑓 ∈ dom ( ω CNF 𝑐 ) ( ( 𝐴 ∈ ( ω ↑o 𝑏 ) ∧ 𝑓 finSupp ∅ ) ∧ ( ( ( ω CNF 𝑏 ) ‘ ( 𝑓 ↾ 𝑏 ) ) = 𝐴 ∧ ( ( ω CNF 𝑐 ) ‘ 𝑓 ) = 𝐴 ) ) ) |