| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onexoegt |
|- ( A e. On -> E. b e. On A e. ( _om ^o b ) ) |
| 2 |
|
eldif |
|- ( c e. ( On \ b ) <-> ( c e. On /\ -. c e. b ) ) |
| 3 |
|
simp2 |
|- ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) -> b e. On ) |
| 4 |
|
pm3.2 |
|- ( b e. On -> ( c e. On -> ( b e. On /\ c e. On ) ) ) |
| 5 |
3 4
|
syl |
|- ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) -> ( c e. On -> ( b e. On /\ c e. On ) ) ) |
| 6 |
|
ontri1 |
|- ( ( b e. On /\ c e. On ) -> ( b C_ c <-> -. c e. b ) ) |
| 7 |
5 6
|
syl6 |
|- ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) -> ( c e. On -> ( b C_ c <-> -. c e. b ) ) ) |
| 8 |
7
|
pm5.32d |
|- ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) -> ( ( c e. On /\ b C_ c ) <-> ( c e. On /\ -. c e. b ) ) ) |
| 9 |
2 8
|
bitr4id |
|- ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) -> ( c e. ( On \ b ) <-> ( c e. On /\ b C_ c ) ) ) |
| 10 |
|
simplr |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ a = A ) /\ f e. dom ( _om CNF c ) ) -> a = A ) |
| 11 |
10
|
breq2d |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ a = A ) /\ f e. dom ( _om CNF c ) ) -> ( f ( _om CNF c ) a <-> f ( _om CNF c ) A ) ) |
| 12 |
|
eqid |
|- dom ( _om CNF c ) = dom ( _om CNF c ) |
| 13 |
|
omelon |
|- _om e. On |
| 14 |
13
|
a1i |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ a = A ) /\ f e. dom ( _om CNF c ) ) -> _om e. On ) |
| 15 |
|
simprl |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> c e. On ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ a = A ) /\ f e. dom ( _om CNF c ) ) -> c e. On ) |
| 17 |
12 14 16
|
cantnff1o |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ a = A ) /\ f e. dom ( _om CNF c ) ) -> ( _om CNF c ) : dom ( _om CNF c ) -1-1-onto-> ( _om ^o c ) ) |
| 18 |
|
f1ofun |
|- ( ( _om CNF c ) : dom ( _om CNF c ) -1-1-onto-> ( _om ^o c ) -> Fun ( _om CNF c ) ) |
| 19 |
17 18
|
syl |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ a = A ) /\ f e. dom ( _om CNF c ) ) -> Fun ( _om CNF c ) ) |
| 20 |
|
funbrfvb |
|- ( ( Fun ( _om CNF c ) /\ f e. dom ( _om CNF c ) ) -> ( ( ( _om CNF c ) ` f ) = A <-> f ( _om CNF c ) A ) ) |
| 21 |
19 20
|
sylancom |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ a = A ) /\ f e. dom ( _om CNF c ) ) -> ( ( ( _om CNF c ) ` f ) = A <-> f ( _om CNF c ) A ) ) |
| 22 |
11 21
|
bitr4d |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ a = A ) /\ f e. dom ( _om CNF c ) ) -> ( f ( _om CNF c ) a <-> ( ( _om CNF c ) ` f ) = A ) ) |
| 23 |
22
|
reubidva |
|- ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ a = A ) -> ( E! f e. dom ( _om CNF c ) f ( _om CNF c ) a <-> E! f e. dom ( _om CNF c ) ( ( _om CNF c ) ` f ) = A ) ) |
| 24 |
|
simpl2 |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> b e. On ) |
| 25 |
13
|
a1i |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> _om e. On ) |
| 26 |
24 15 25
|
3jca |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> ( b e. On /\ c e. On /\ _om e. On ) ) |
| 27 |
|
peano1 |
|- (/) e. _om |
| 28 |
26 27
|
jctir |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> ( ( b e. On /\ c e. On /\ _om e. On ) /\ (/) e. _om ) ) |
| 29 |
|
simprr |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> b C_ c ) |
| 30 |
|
oewordi |
|- ( ( ( b e. On /\ c e. On /\ _om e. On ) /\ (/) e. _om ) -> ( b C_ c -> ( _om ^o b ) C_ ( _om ^o c ) ) ) |
| 31 |
28 29 30
|
sylc |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> ( _om ^o b ) C_ ( _om ^o c ) ) |
| 32 |
|
simpl3 |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> A e. ( _om ^o b ) ) |
| 33 |
31 32
|
sseldd |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> A e. ( _om ^o c ) ) |
| 34 |
12 25 15
|
cantnff1o |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> ( _om CNF c ) : dom ( _om CNF c ) -1-1-onto-> ( _om ^o c ) ) |
| 35 |
|
dff1o5 |
|- ( ( _om CNF c ) : dom ( _om CNF c ) -1-1-onto-> ( _om ^o c ) <-> ( ( _om CNF c ) : dom ( _om CNF c ) -1-1-> ( _om ^o c ) /\ ran ( _om CNF c ) = ( _om ^o c ) ) ) |
| 36 |
|
simpr |
|- ( ( ( _om CNF c ) : dom ( _om CNF c ) -1-1-> ( _om ^o c ) /\ ran ( _om CNF c ) = ( _om ^o c ) ) -> ran ( _om CNF c ) = ( _om ^o c ) ) |
| 37 |
35 36
|
sylbi |
|- ( ( _om CNF c ) : dom ( _om CNF c ) -1-1-onto-> ( _om ^o c ) -> ran ( _om CNF c ) = ( _om ^o c ) ) |
| 38 |
34 37
|
syl |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> ran ( _om CNF c ) = ( _om ^o c ) ) |
| 39 |
33 38
|
eleqtrrd |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> A e. ran ( _om CNF c ) ) |
| 40 |
|
dff1o2 |
|- ( ( _om CNF c ) : dom ( _om CNF c ) -1-1-onto-> ( _om ^o c ) <-> ( ( _om CNF c ) Fn dom ( _om CNF c ) /\ Fun `' ( _om CNF c ) /\ ran ( _om CNF c ) = ( _om ^o c ) ) ) |
| 41 |
|
simp2 |
|- ( ( ( _om CNF c ) Fn dom ( _om CNF c ) /\ Fun `' ( _om CNF c ) /\ ran ( _om CNF c ) = ( _om ^o c ) ) -> Fun `' ( _om CNF c ) ) |
| 42 |
40 41
|
sylbi |
|- ( ( _om CNF c ) : dom ( _om CNF c ) -1-1-onto-> ( _om ^o c ) -> Fun `' ( _om CNF c ) ) |
| 43 |
34 42
|
syl |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> Fun `' ( _om CNF c ) ) |
| 44 |
|
funcnv3 |
|- ( Fun `' ( _om CNF c ) <-> A. a e. ran ( _om CNF c ) E! f e. dom ( _om CNF c ) f ( _om CNF c ) a ) |
| 45 |
43 44
|
sylib |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> A. a e. ran ( _om CNF c ) E! f e. dom ( _om CNF c ) f ( _om CNF c ) a ) |
| 46 |
23 39 45
|
rspcdv2 |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> E! f e. dom ( _om CNF c ) ( ( _om CNF c ) ` f ) = A ) |
| 47 |
32
|
ad2antrr |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> A e. ( _om ^o b ) ) |
| 48 |
|
simplr |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> f e. dom ( _om CNF c ) ) |
| 49 |
13
|
a1i |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> _om e. On ) |
| 50 |
15
|
ad2antrr |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> c e. On ) |
| 51 |
12 49 50
|
cantnfs |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( f e. dom ( _om CNF c ) <-> ( f : c --> _om /\ f finSupp (/) ) ) ) |
| 52 |
48 51
|
mpbid |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( f : c --> _om /\ f finSupp (/) ) ) |
| 53 |
|
simpr |
|- ( ( f : c --> _om /\ f finSupp (/) ) -> f finSupp (/) ) |
| 54 |
52 53
|
syl |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> f finSupp (/) ) |
| 55 |
|
eqid |
|- dom ( _om CNF b ) = dom ( _om CNF b ) |
| 56 |
24
|
ad2antrr |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> b e. On ) |
| 57 |
29
|
ad2antrr |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> b C_ c ) |
| 58 |
|
simpr |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( ( _om CNF c ) ` f ) = A ) |
| 59 |
58 47
|
eqeltrd |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( ( _om CNF c ) ` f ) e. ( _om ^o b ) ) |
| 60 |
|
1onn |
|- 1o e. _om |
| 61 |
|
ondif2 |
|- ( _om e. ( On \ 2o ) <-> ( _om e. On /\ 1o e. _om ) ) |
| 62 |
13 60 61
|
mpbir2an |
|- _om e. ( On \ 2o ) |
| 63 |
62
|
a1i |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> _om e. ( On \ 2o ) ) |
| 64 |
|
cantnfresb |
|- ( ( ( _om e. ( On \ 2o ) /\ c e. On ) /\ ( b e. On /\ f e. dom ( _om CNF c ) ) ) -> ( ( ( _om CNF c ) ` f ) e. ( _om ^o b ) <-> A. d e. ( c \ b ) ( f ` d ) = (/) ) ) |
| 65 |
63 50 56 48 64
|
syl22anc |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( ( ( _om CNF c ) ` f ) e. ( _om ^o b ) <-> A. d e. ( c \ b ) ( f ` d ) = (/) ) ) |
| 66 |
59 65
|
mpbid |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> A. d e. ( c \ b ) ( f ` d ) = (/) ) |
| 67 |
66
|
r19.21bi |
|- ( ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) /\ d e. ( c \ b ) ) -> ( f ` d ) = (/) ) |
| 68 |
27
|
a1i |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> (/) e. _om ) |
| 69 |
|
simpllr |
|- ( ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) /\ d e. b ) -> f e. dom ( _om CNF c ) ) |
| 70 |
13
|
a1i |
|- ( ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) /\ d e. b ) -> _om e. On ) |
| 71 |
15
|
adantr |
|- ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) -> c e. On ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) /\ d e. b ) -> c e. On ) |
| 73 |
12 70 72
|
cantnfs |
|- ( ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) /\ d e. b ) -> ( f e. dom ( _om CNF c ) <-> ( f : c --> _om /\ f finSupp (/) ) ) ) |
| 74 |
69 73
|
mpbid |
|- ( ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) /\ d e. b ) -> ( f : c --> _om /\ f finSupp (/) ) ) |
| 75 |
74
|
simpld |
|- ( ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) /\ d e. b ) -> f : c --> _om ) |
| 76 |
57
|
sselda |
|- ( ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) /\ d e. b ) -> d e. c ) |
| 77 |
75 76
|
ffvelcdmd |
|- ( ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) /\ d e. b ) -> ( f ` d ) e. _om ) |
| 78 |
77
|
fmpttd |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( d e. b |-> ( f ` d ) ) : b --> _om ) |
| 79 |
12 25 15
|
cantnfs |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> ( f e. dom ( _om CNF c ) <-> ( f : c --> _om /\ f finSupp (/) ) ) ) |
| 80 |
79
|
simprbda |
|- ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) -> f : c --> _om ) |
| 81 |
80
|
adantr |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> f : c --> _om ) |
| 82 |
81 57
|
feqresmpt |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( f |` b ) = ( d e. b |-> ( f ` d ) ) ) |
| 83 |
54 68
|
fsuppres |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( f |` b ) finSupp (/) ) |
| 84 |
82 83
|
eqbrtrrd |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( d e. b |-> ( f ` d ) ) finSupp (/) ) |
| 85 |
55 49 56
|
cantnfs |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( ( d e. b |-> ( f ` d ) ) e. dom ( _om CNF b ) <-> ( ( d e. b |-> ( f ` d ) ) : b --> _om /\ ( d e. b |-> ( f ` d ) ) finSupp (/) ) ) ) |
| 86 |
78 84 85
|
mpbir2and |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( d e. b |-> ( f ` d ) ) e. dom ( _om CNF b ) ) |
| 87 |
55 49 56 50 57 67 68 12 86
|
cantnfres |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( ( _om CNF b ) ` ( d e. b |-> ( f ` d ) ) ) = ( ( _om CNF c ) ` ( d e. c |-> ( f ` d ) ) ) ) |
| 88 |
82
|
fveq2d |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( ( _om CNF b ) ` ( f |` b ) ) = ( ( _om CNF b ) ` ( d e. b |-> ( f ` d ) ) ) ) |
| 89 |
81
|
feqmptd |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> f = ( d e. c |-> ( f ` d ) ) ) |
| 90 |
89
|
fveq2d |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( ( _om CNF c ) ` f ) = ( ( _om CNF c ) ` ( d e. c |-> ( f ` d ) ) ) ) |
| 91 |
87 88 90
|
3eqtr4d |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( ( _om CNF b ) ` ( f |` b ) ) = ( ( _om CNF c ) ` f ) ) |
| 92 |
91 58
|
eqtrd |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( ( _om CNF b ) ` ( f |` b ) ) = A ) |
| 93 |
47 54 92
|
3jca |
|- ( ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) /\ ( ( _om CNF c ) ` f ) = A ) -> ( A e. ( _om ^o b ) /\ f finSupp (/) /\ ( ( _om CNF b ) ` ( f |` b ) ) = A ) ) |
| 94 |
93
|
ex |
|- ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) -> ( ( ( _om CNF c ) ` f ) = A -> ( A e. ( _om ^o b ) /\ f finSupp (/) /\ ( ( _om CNF b ) ` ( f |` b ) ) = A ) ) ) |
| 95 |
94
|
pm4.71rd |
|- ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) -> ( ( ( _om CNF c ) ` f ) = A <-> ( ( A e. ( _om ^o b ) /\ f finSupp (/) /\ ( ( _om CNF b ) ` ( f |` b ) ) = A ) /\ ( ( _om CNF c ) ` f ) = A ) ) ) |
| 96 |
|
3an4anass |
|- ( ( ( A e. ( _om ^o b ) /\ f finSupp (/) /\ ( ( _om CNF b ) ` ( f |` b ) ) = A ) /\ ( ( _om CNF c ) ` f ) = A ) <-> ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) |
| 97 |
95 96
|
bitrdi |
|- ( ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) /\ f e. dom ( _om CNF c ) ) -> ( ( ( _om CNF c ) ` f ) = A <-> ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) ) |
| 98 |
97
|
reubidva |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> ( E! f e. dom ( _om CNF c ) ( ( _om CNF c ) ` f ) = A <-> E! f e. dom ( _om CNF c ) ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) ) |
| 99 |
46 98
|
mpbid |
|- ( ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) /\ ( c e. On /\ b C_ c ) ) -> E! f e. dom ( _om CNF c ) ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) |
| 100 |
99
|
ex |
|- ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) -> ( ( c e. On /\ b C_ c ) -> E! f e. dom ( _om CNF c ) ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) ) |
| 101 |
9 100
|
sylbid |
|- ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) -> ( c e. ( On \ b ) -> E! f e. dom ( _om CNF c ) ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) ) |
| 102 |
101
|
ralrimiv |
|- ( ( A e. On /\ b e. On /\ A e. ( _om ^o b ) ) -> A. c e. ( On \ b ) E! f e. dom ( _om CNF c ) ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) |
| 103 |
102
|
3exp |
|- ( A e. On -> ( b e. On -> ( A e. ( _om ^o b ) -> A. c e. ( On \ b ) E! f e. dom ( _om CNF c ) ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) ) ) |
| 104 |
103
|
reximdvai |
|- ( A e. On -> ( E. b e. On A e. ( _om ^o b ) -> E. b e. On A. c e. ( On \ b ) E! f e. dom ( _om CNF c ) ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) ) |
| 105 |
1 104
|
mpd |
|- ( A e. On -> E. b e. On A. c e. ( On \ b ) E! f e. dom ( _om CNF c ) ( ( A e. ( _om ^o b ) /\ f finSupp (/) ) /\ ( ( ( _om CNF b ) ` ( f |` b ) ) = A /\ ( ( _om CNF c ) ` f ) = A ) ) ) |