Metamath Proof Explorer


Theorem cantnf2

Description: For every ordinal, A , there is a an ordinal exponent b such that A is less than ( _om ^o b ) and for every ordinal at least as large as b there is a unique Cantor normal form, f , with zeros for all the unnecessary higher terms, that sums to A . Theorem 5.3 of Schloeder p. 16. (Contributed by RP, 3-Feb-2025)

Ref Expression
Assertion cantnf2 A On b On c On b ∃! f dom ω CNF c A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A

Proof

Step Hyp Ref Expression
1 onexoegt A On b On A ω 𝑜 b
2 eldif c On b c On ¬ c b
3 simp2 A On b On A ω 𝑜 b b On
4 pm3.2 b On c On b On c On
5 3 4 syl A On b On A ω 𝑜 b c On b On c On
6 ontri1 b On c On b c ¬ c b
7 5 6 syl6 A On b On A ω 𝑜 b c On b c ¬ c b
8 7 pm5.32d A On b On A ω 𝑜 b c On b c c On ¬ c b
9 2 8 bitr4id A On b On A ω 𝑜 b c On b c On b c
10 simplr A On b On A ω 𝑜 b c On b c a = A f dom ω CNF c a = A
11 10 breq2d A On b On A ω 𝑜 b c On b c a = A f dom ω CNF c f ω CNF c a f ω CNF c A
12 eqid dom ω CNF c = dom ω CNF c
13 omelon ω On
14 13 a1i A On b On A ω 𝑜 b c On b c a = A f dom ω CNF c ω On
15 simprl A On b On A ω 𝑜 b c On b c c On
16 15 ad2antrr A On b On A ω 𝑜 b c On b c a = A f dom ω CNF c c On
17 12 14 16 cantnff1o A On b On A ω 𝑜 b c On b c a = A f dom ω CNF c ω CNF c : dom ω CNF c 1-1 onto ω 𝑜 c
18 f1ofun ω CNF c : dom ω CNF c 1-1 onto ω 𝑜 c Fun ω CNF c
19 17 18 syl A On b On A ω 𝑜 b c On b c a = A f dom ω CNF c Fun ω CNF c
20 funbrfvb Fun ω CNF c f dom ω CNF c ω CNF c f = A f ω CNF c A
21 19 20 sylancom A On b On A ω 𝑜 b c On b c a = A f dom ω CNF c ω CNF c f = A f ω CNF c A
22 11 21 bitr4d A On b On A ω 𝑜 b c On b c a = A f dom ω CNF c f ω CNF c a ω CNF c f = A
23 22 reubidva A On b On A ω 𝑜 b c On b c a = A ∃! f dom ω CNF c f ω CNF c a ∃! f dom ω CNF c ω CNF c f = A
24 simpl2 A On b On A ω 𝑜 b c On b c b On
25 13 a1i A On b On A ω 𝑜 b c On b c ω On
26 24 15 25 3jca A On b On A ω 𝑜 b c On b c b On c On ω On
27 peano1 ω
28 26 27 jctir A On b On A ω 𝑜 b c On b c b On c On ω On ω
29 simprr A On b On A ω 𝑜 b c On b c b c
30 oewordi b On c On ω On ω b c ω 𝑜 b ω 𝑜 c
31 28 29 30 sylc A On b On A ω 𝑜 b c On b c ω 𝑜 b ω 𝑜 c
32 simpl3 A On b On A ω 𝑜 b c On b c A ω 𝑜 b
33 31 32 sseldd A On b On A ω 𝑜 b c On b c A ω 𝑜 c
34 12 25 15 cantnff1o A On b On A ω 𝑜 b c On b c ω CNF c : dom ω CNF c 1-1 onto ω 𝑜 c
35 dff1o5 ω CNF c : dom ω CNF c 1-1 onto ω 𝑜 c ω CNF c : dom ω CNF c 1-1 ω 𝑜 c ran ω CNF c = ω 𝑜 c
36 simpr ω CNF c : dom ω CNF c 1-1 ω 𝑜 c ran ω CNF c = ω 𝑜 c ran ω CNF c = ω 𝑜 c
37 35 36 sylbi ω CNF c : dom ω CNF c 1-1 onto ω 𝑜 c ran ω CNF c = ω 𝑜 c
38 34 37 syl A On b On A ω 𝑜 b c On b c ran ω CNF c = ω 𝑜 c
39 33 38 eleqtrrd A On b On A ω 𝑜 b c On b c A ran ω CNF c
40 dff1o2 ω CNF c : dom ω CNF c 1-1 onto ω 𝑜 c ω CNF c Fn dom ω CNF c Fun ω CNF c -1 ran ω CNF c = ω 𝑜 c
41 simp2 ω CNF c Fn dom ω CNF c Fun ω CNF c -1 ran ω CNF c = ω 𝑜 c Fun ω CNF c -1
42 40 41 sylbi ω CNF c : dom ω CNF c 1-1 onto ω 𝑜 c Fun ω CNF c -1
43 34 42 syl A On b On A ω 𝑜 b c On b c Fun ω CNF c -1
44 funcnv3 Fun ω CNF c -1 a ran ω CNF c ∃! f dom ω CNF c f ω CNF c a
45 43 44 sylib A On b On A ω 𝑜 b c On b c a ran ω CNF c ∃! f dom ω CNF c f ω CNF c a
46 23 39 45 rspcdv2 A On b On A ω 𝑜 b c On b c ∃! f dom ω CNF c ω CNF c f = A
47 32 ad2antrr A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A A ω 𝑜 b
48 simplr A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A f dom ω CNF c
49 13 a1i A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω On
50 15 ad2antrr A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A c On
51 12 49 50 cantnfs A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A f dom ω CNF c f : c ω finSupp f
52 48 51 mpbid A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A f : c ω finSupp f
53 simpr f : c ω finSupp f finSupp f
54 52 53 syl A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A finSupp f
55 eqid dom ω CNF b = dom ω CNF b
56 24 ad2antrr A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A b On
57 29 ad2antrr A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A b c
58 simpr A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω CNF c f = A
59 58 47 eqeltrd A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω CNF c f ω 𝑜 b
60 1onn 1 𝑜 ω
61 ondif2 ω On 2 𝑜 ω On 1 𝑜 ω
62 13 60 61 mpbir2an ω On 2 𝑜
63 62 a1i A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω On 2 𝑜
64 cantnfresb ω On 2 𝑜 c On b On f dom ω CNF c ω CNF c f ω 𝑜 b d c b f d =
65 63 50 56 48 64 syl22anc A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω CNF c f ω 𝑜 b d c b f d =
66 59 65 mpbid A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d c b f d =
67 66 r19.21bi A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d c b f d =
68 27 a1i A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω
69 simpllr A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b f dom ω CNF c
70 13 a1i A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b ω On
71 15 adantr A On b On A ω 𝑜 b c On b c f dom ω CNF c c On
72 71 ad2antrr A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b c On
73 12 70 72 cantnfs A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b f dom ω CNF c f : c ω finSupp f
74 69 73 mpbid A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b f : c ω finSupp f
75 74 simpld A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b f : c ω
76 57 sselda A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b d c
77 75 76 ffvelcdmd A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b f d ω
78 77 fmpttd A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b f d : b ω
79 12 25 15 cantnfs A On b On A ω 𝑜 b c On b c f dom ω CNF c f : c ω finSupp f
80 79 simprbda A On b On A ω 𝑜 b c On b c f dom ω CNF c f : c ω
81 80 adantr A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A f : c ω
82 81 57 feqresmpt A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A f b = d b f d
83 54 68 fsuppres A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A finSupp f b
84 82 83 eqbrtrrd A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A finSupp d b f d
85 55 49 56 cantnfs A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b f d dom ω CNF b d b f d : b ω finSupp d b f d
86 78 84 85 mpbir2and A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A d b f d dom ω CNF b
87 55 49 56 50 57 67 68 12 86 cantnfres A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω CNF b d b f d = ω CNF c d c f d
88 82 fveq2d A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω CNF b f b = ω CNF b d b f d
89 81 feqmptd A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A f = d c f d
90 89 fveq2d A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω CNF c f = ω CNF c d c f d
91 87 88 90 3eqtr4d A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω CNF b f b = ω CNF c f
92 91 58 eqtrd A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A ω CNF b f b = A
93 47 54 92 3jca A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A A ω 𝑜 b finSupp f ω CNF b f b = A
94 93 ex A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A A ω 𝑜 b finSupp f ω CNF b f b = A
95 94 pm4.71rd A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
96 3an4anass A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
97 95 96 bitrdi A On b On A ω 𝑜 b c On b c f dom ω CNF c ω CNF c f = A A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
98 97 reubidva A On b On A ω 𝑜 b c On b c ∃! f dom ω CNF c ω CNF c f = A ∃! f dom ω CNF c A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
99 46 98 mpbid A On b On A ω 𝑜 b c On b c ∃! f dom ω CNF c A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
100 99 ex A On b On A ω 𝑜 b c On b c ∃! f dom ω CNF c A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
101 9 100 sylbid A On b On A ω 𝑜 b c On b ∃! f dom ω CNF c A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
102 101 ralrimiv A On b On A ω 𝑜 b c On b ∃! f dom ω CNF c A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
103 102 3exp A On b On A ω 𝑜 b c On b ∃! f dom ω CNF c A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
104 103 reximdvai A On b On A ω 𝑜 b b On c On b ∃! f dom ω CNF c A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A
105 1 104 mpd A On b On c On b ∃! f dom ω CNF c A ω 𝑜 b finSupp f ω CNF b f b = A ω CNF c f = A