Step |
Hyp |
Ref |
Expression |
1 |
|
0elon |
⊢ ∅ ∈ On |
2 |
|
0lt1o |
⊢ ∅ ∈ 1o |
3 |
|
omelon |
⊢ ω ∈ On |
4 |
|
oe0 |
⊢ ( ω ∈ On → ( ω ↑o ∅ ) = 1o ) |
5 |
3 4
|
ax-mp |
⊢ ( ω ↑o ∅ ) = 1o |
6 |
2 5
|
eleqtrri |
⊢ ∅ ∈ ( ω ↑o ∅ ) |
7 |
6
|
a1i |
⊢ ( 𝐴 = ∅ → ∅ ∈ ( ω ↑o ∅ ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ω ↑o 𝑥 ) = ( ω ↑o ∅ ) ) |
9 |
8
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( ∅ ∈ ( ω ↑o 𝑥 ) ↔ ∅ ∈ ( ω ↑o ∅ ) ) ) |
10 |
9
|
rspcev |
⊢ ( ( ∅ ∈ On ∧ ∅ ∈ ( ω ↑o ∅ ) ) → ∃ 𝑥 ∈ On ∅ ∈ ( ω ↑o 𝑥 ) ) |
11 |
1 7 10
|
sylancr |
⊢ ( 𝐴 = ∅ → ∃ 𝑥 ∈ On ∅ ∈ ( ω ↑o 𝑥 ) ) |
12 |
|
eleq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ ( ω ↑o 𝑥 ) ↔ ∅ ∈ ( ω ↑o 𝑥 ) ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝐴 = ∅ → ( ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ↔ ∃ 𝑥 ∈ On ∅ ∈ ( ω ↑o 𝑥 ) ) ) |
14 |
11 13
|
mpbird |
⊢ ( 𝐴 = ∅ → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) |
15 |
14
|
a1i |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) |
16 |
|
1onn |
⊢ 1o ∈ ω |
17 |
|
ondif2 |
⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) |
18 |
3 16 17
|
mpbir2an |
⊢ ω ∈ ( On ∖ 2o ) |
19 |
|
ondif1 |
⊢ ( 𝐴 ∈ ( On ∖ 1o ) ↔ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) |
20 |
19
|
biimpri |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → 𝐴 ∈ ( On ∖ 1o ) ) |
21 |
|
oeeu |
⊢ ( ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ ( On ∖ 1o ) ) → ∃! 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( ω ∖ 1o ) ∃ 𝑐 ∈ ( ω ↑o 𝑎 ) ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) ) |
22 |
18 20 21
|
sylancr |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∃! 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( ω ∖ 1o ) ∃ 𝑐 ∈ ( ω ↑o 𝑎 ) ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) ) |
23 |
|
euex |
⊢ ( ∃! 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( ω ∖ 1o ) ∃ 𝑐 ∈ ( ω ↑o 𝑎 ) ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ∃ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( ω ∖ 1o ) ∃ 𝑐 ∈ ( ω ↑o 𝑎 ) ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) ) |
24 |
|
simpr |
⊢ ( ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) |
25 |
|
simp1 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → 𝑎 ∈ On ) |
26 |
|
onsuc |
⊢ ( 𝑎 ∈ On → suc 𝑎 ∈ On ) |
27 |
25 26
|
syl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → suc 𝑎 ∈ On ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) ) → suc 𝑎 ∈ On ) |
29 |
|
simpr |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) |
30 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝑎 ∈ On ) → ( ω ↑o 𝑎 ) ∈ On ) |
31 |
3 25 30
|
sylancr |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ω ↑o 𝑎 ) ∈ On ) |
32 |
3
|
a1i |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ω ∈ On ) |
33 |
|
omcl |
⊢ ( ( ( ω ↑o 𝑎 ) ∈ On ∧ ω ∈ On ) → ( ( ω ↑o 𝑎 ) ·o ω ) ∈ On ) |
34 |
31 32 33
|
syl2anc |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ( ω ↑o 𝑎 ) ·o ω ) ∈ On ) |
35 |
|
simp3 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → 𝑐 ∈ ( ω ↑o 𝑎 ) ) |
36 |
|
eldifi |
⊢ ( 𝑏 ∈ ( ω ∖ 1o ) → 𝑏 ∈ ω ) |
37 |
|
nnon |
⊢ ( 𝑏 ∈ ω → 𝑏 ∈ On ) |
38 |
36 37
|
syl |
⊢ ( 𝑏 ∈ ( ω ∖ 1o ) → 𝑏 ∈ On ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → 𝑏 ∈ On ) |
40 |
|
omcl |
⊢ ( ( ( ω ↑o 𝑎 ) ∈ On ∧ 𝑏 ∈ On ) → ( ( ω ↑o 𝑎 ) ·o 𝑏 ) ∈ On ) |
41 |
31 39 40
|
syl2anc |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ( ω ↑o 𝑎 ) ·o 𝑏 ) ∈ On ) |
42 |
|
oaordi |
⊢ ( ( ( ω ↑o 𝑎 ) ∈ On ∧ ( ( ω ↑o 𝑎 ) ·o 𝑏 ) ∈ On ) → ( 𝑐 ∈ ( ω ↑o 𝑎 ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o ( ω ↑o 𝑎 ) ) ) ) |
43 |
31 41 42
|
syl2anc |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( 𝑐 ∈ ( ω ↑o 𝑎 ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o ( ω ↑o 𝑎 ) ) ) ) |
44 |
35 43
|
mpd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o ( ω ↑o 𝑎 ) ) ) |
45 |
|
omsuc |
⊢ ( ( ( ω ↑o 𝑎 ) ∈ On ∧ 𝑏 ∈ On ) → ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) = ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o ( ω ↑o 𝑎 ) ) ) |
46 |
31 39 45
|
syl2anc |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) = ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o ( ω ↑o 𝑎 ) ) ) |
47 |
44 46
|
eleqtrrd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) ) |
48 |
36
|
3ad2ant2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → 𝑏 ∈ ω ) |
49 |
|
peano2 |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) |
50 |
48 49
|
syl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → suc 𝑏 ∈ ω ) |
51 |
|
peano1 |
⊢ ∅ ∈ ω |
52 |
51
|
a1i |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ∅ ∈ ω ) |
53 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 𝑎 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝑎 ) ) |
54 |
32 25 52 53
|
syl21anc |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ∅ ∈ ( ω ↑o 𝑎 ) ) |
55 |
|
omordi |
⊢ ( ( ( ω ∈ On ∧ ( ω ↑o 𝑎 ) ∈ On ) ∧ ∅ ∈ ( ω ↑o 𝑎 ) ) → ( suc 𝑏 ∈ ω → ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) ∈ ( ( ω ↑o 𝑎 ) ·o ω ) ) ) |
56 |
32 31 54 55
|
syl21anc |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( suc 𝑏 ∈ ω → ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) ∈ ( ( ω ↑o 𝑎 ) ·o ω ) ) ) |
57 |
50 56
|
mpd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) ∈ ( ( ω ↑o 𝑎 ) ·o ω ) ) |
58 |
|
ontr1 |
⊢ ( ( ( ω ↑o 𝑎 ) ·o ω ) ∈ On → ( ( ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) ∧ ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) ∈ ( ( ω ↑o 𝑎 ) ·o ω ) ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ( ω ↑o 𝑎 ) ·o ω ) ) ) |
59 |
58
|
imp |
⊢ ( ( ( ( ω ↑o 𝑎 ) ·o ω ) ∈ On ∧ ( ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) ∧ ( ( ω ↑o 𝑎 ) ·o suc 𝑏 ) ∈ ( ( ω ↑o 𝑎 ) ·o ω ) ) ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ( ω ↑o 𝑎 ) ·o ω ) ) |
60 |
34 47 57 59
|
syl12anc |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ( ω ↑o 𝑎 ) ·o ω ) ) |
61 |
|
oesuc |
⊢ ( ( ω ∈ On ∧ 𝑎 ∈ On ) → ( ω ↑o suc 𝑎 ) = ( ( ω ↑o 𝑎 ) ·o ω ) ) |
62 |
3 25 61
|
sylancr |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ω ↑o suc 𝑎 ) = ( ( ω ↑o 𝑎 ) ·o ω ) ) |
63 |
60 62
|
eleqtrrd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ω ↑o suc 𝑎 ) ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) ∈ ( ω ↑o suc 𝑎 ) ) |
65 |
29 64
|
eqeltrrd |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → 𝐴 ∈ ( ω ↑o suc 𝑎 ) ) |
66 |
65
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) ) ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → 𝐴 ∈ ( ω ↑o suc 𝑎 ) ) |
67 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑎 → ( ω ↑o 𝑥 ) = ( ω ↑o suc 𝑎 ) ) |
68 |
67
|
eleq2d |
⊢ ( 𝑥 = suc 𝑎 → ( 𝐴 ∈ ( ω ↑o 𝑥 ) ↔ 𝐴 ∈ ( ω ↑o suc 𝑎 ) ) ) |
69 |
68
|
rspcev |
⊢ ( ( suc 𝑎 ∈ On ∧ 𝐴 ∈ ( ω ↑o suc 𝑎 ) ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) |
70 |
28 66 69
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) ) ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) |
71 |
70
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) ) → ( ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) |
72 |
24 71
|
syl5 |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ ( 𝑎 ∈ On ∧ 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) ) → ( ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) |
73 |
72
|
3exp2 |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑎 ∈ On → ( 𝑏 ∈ ( ω ∖ 1o ) → ( 𝑐 ∈ ( ω ↑o 𝑎 ) → ( ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ) ) ) |
74 |
73
|
imp4b |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ 𝑎 ∈ On ) → ( ( 𝑏 ∈ ( ω ∖ 1o ) ∧ 𝑐 ∈ ( ω ↑o 𝑎 ) ) → ( ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ) |
75 |
74
|
rexlimdvv |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ 𝑎 ∈ On ) → ( ∃ 𝑏 ∈ ( ω ∖ 1o ) ∃ 𝑐 ∈ ( ω ↑o 𝑎 ) ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) |
76 |
75
|
rexlimdva |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( ω ∖ 1o ) ∃ 𝑐 ∈ ( ω ↑o 𝑎 ) ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) |
77 |
76
|
exlimdv |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∃ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( ω ∖ 1o ) ∃ 𝑐 ∈ ( ω ↑o 𝑎 ) ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) |
78 |
23 77
|
syl5 |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∃! 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( ω ∖ 1o ) ∃ 𝑐 ∈ ( ω ↑o 𝑎 ) ( 𝑑 = 〈 𝑎 , 𝑏 , 𝑐 〉 ∧ ( ( ( ω ↑o 𝑎 ) ·o 𝑏 ) +o 𝑐 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) |
79 |
22 78
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) |
80 |
79
|
ex |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) |
81 |
|
on0eqel |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
82 |
15 80 81
|
mpjaod |
⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ↑o 𝑥 ) ) |