Description: The infimum of a non-empty class of ordinals exists. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oninfex2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onintunirab | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 = ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) | |
2 | intex | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) | |
3 | 2 | biimpi | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ∈ V ) |
4 | 3 | adantl | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ V ) |
5 | 1 4 | eqeltrrd | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∈ V ) |