Metamath Proof Explorer


Theorem oninfex2

Description: The infimum of a non-empty class of ordinals exists. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfex2 ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ∈ V )

Proof

Step Hyp Ref Expression
1 onintunirab ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 = { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } )
2 intex ( 𝐴 ≠ ∅ ↔ 𝐴 ∈ V )
3 2 biimpi ( 𝐴 ≠ ∅ → 𝐴 ∈ V )
4 3 adantl ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ V )
5 1 4 eqeltrrd ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ∈ V )