Metamath Proof Explorer


Theorem onintunirab

Description: The intersection of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion onintunirab ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 = { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } )

Proof

Step Hyp Ref Expression
1 simp3 ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦𝐴 𝑥𝑦 ) → ∀ 𝑦𝐴 𝑥𝑦 )
2 ssint ( 𝑥 𝐴 ↔ ∀ 𝑦𝐴 𝑥𝑦 )
3 1 2 sylibr ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦𝐴 𝑥𝑦 ) → 𝑥 𝐴 )
4 simp2 ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦𝐴 𝑥𝑦 ) → 𝑥 ∈ On )
5 oninton ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )
6 5 3ad2ant1 ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦𝐴 𝑥𝑦 ) → 𝐴 ∈ On )
7 onsssuc ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑥 𝐴𝑥 ∈ suc 𝐴 ) )
8 4 6 7 syl2anc ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦𝐴 𝑥𝑦 ) → ( 𝑥 𝐴𝑥 ∈ suc 𝐴 ) )
9 3 8 mpbid ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦𝐴 𝑥𝑦 ) → 𝑥 ∈ suc 𝐴 )
10 9 rabssdv ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ suc 𝐴 )
11 ssrab2 { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ On
12 11 a1i ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ On )
13 eloni ( 𝐴 ∈ On → Ord 𝐴 )
14 5 13 syl ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → Ord 𝐴 )
15 ordunisssuc ( ( { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ On ∧ Ord 𝐴 ) → ( { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐴 ↔ { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ suc 𝐴 ) )
16 12 14 15 syl2anc ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐴 ↔ { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ suc 𝐴 ) )
17 10 16 mpbird ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐴 )
18 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦 𝐴𝑦 ) )
19 18 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦𝐴 𝑥𝑦 ↔ ∀ 𝑦𝐴 𝐴𝑦 ) )
20 intss1 ( 𝑦𝐴 𝐴𝑦 )
21 20 rgen 𝑦𝐴 𝐴𝑦
22 21 a1i ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∀ 𝑦𝐴 𝐴𝑦 )
23 19 5 22 elrabd ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } )
24 unissel ( ( { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ⊆ 𝐴 𝐴 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ) → { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } = 𝐴 )
25 17 23 24 syl2anc ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } = 𝐴 )
26 25 eqcomd ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 = { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } )