Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) → ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
2 |
|
ssint |
⊢ ( 𝑥 ⊆ ∩ 𝐴 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
3 |
1 2
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) → 𝑥 ⊆ ∩ 𝐴 ) |
4 |
|
simp2 |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) → 𝑥 ∈ On ) |
5 |
|
oninton |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) → ∩ 𝐴 ∈ On ) |
7 |
|
onsssuc |
⊢ ( ( 𝑥 ∈ On ∧ ∩ 𝐴 ∈ On ) → ( 𝑥 ⊆ ∩ 𝐴 ↔ 𝑥 ∈ suc ∩ 𝐴 ) ) |
8 |
4 6 7
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) → ( 𝑥 ⊆ ∩ 𝐴 ↔ 𝑥 ∈ suc ∩ 𝐴 ) ) |
9 |
3 8
|
mpbid |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) → 𝑥 ∈ suc ∩ 𝐴 ) |
10 |
9
|
rabssdv |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ suc ∩ 𝐴 ) |
11 |
|
ssrab2 |
⊢ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ On |
12 |
11
|
a1i |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ On ) |
13 |
|
eloni |
⊢ ( ∩ 𝐴 ∈ On → Ord ∩ 𝐴 ) |
14 |
5 13
|
syl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → Ord ∩ 𝐴 ) |
15 |
|
ordunisssuc |
⊢ ( ( { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ On ∧ Ord ∩ 𝐴 ) → ( ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ ∩ 𝐴 ↔ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ suc ∩ 𝐴 ) ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ ∩ 𝐴 ↔ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ suc ∩ 𝐴 ) ) |
17 |
10 16
|
mpbird |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ ∩ 𝐴 ) |
18 |
|
sseq1 |
⊢ ( 𝑥 = ∩ 𝐴 → ( 𝑥 ⊆ 𝑦 ↔ ∩ 𝐴 ⊆ 𝑦 ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑥 = ∩ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 ) ) |
20 |
|
intss1 |
⊢ ( 𝑦 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑦 ) |
21 |
20
|
rgen |
⊢ ∀ 𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 |
22 |
21
|
a1i |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∀ 𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 ) |
23 |
19 5 22
|
elrabd |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) |
24 |
|
unissel |
⊢ ( ( ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ⊆ ∩ 𝐴 ∧ ∩ 𝐴 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) → ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } = ∩ 𝐴 ) |
25 |
17 23 24
|
syl2anc |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } = ∩ 𝐴 ) |
26 |
25
|
eqcomd |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 = ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) |