Metamath Proof Explorer


Theorem oninfex2

Description: The infimum of a non-empty class of ordinals exists. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfex2
|- ( ( A C_ On /\ A =/= (/) ) -> U. { x e. On | A. y e. A x C_ y } e. _V )

Proof

Step Hyp Ref Expression
1 onintunirab
 |-  ( ( A C_ On /\ A =/= (/) ) -> |^| A = U. { x e. On | A. y e. A x C_ y } )
2 intex
 |-  ( A =/= (/) <-> |^| A e. _V )
3 2 biimpi
 |-  ( A =/= (/) -> |^| A e. _V )
4 3 adantl
 |-  ( ( A C_ On /\ A =/= (/) ) -> |^| A e. _V )
5 1 4 eqeltrrd
 |-  ( ( A C_ On /\ A =/= (/) ) -> U. { x e. On | A. y e. A x C_ y } e. _V )