Description: The infimum of a non-empty class of ordinals exists. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oninfex2 | |- ( ( A C_ On /\ A =/= (/) ) -> U. { x e. On | A. y e. A x C_ y } e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onintunirab | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A = U. { x e. On | A. y e. A x C_ y } ) |
|
2 | intex | |- ( A =/= (/) <-> |^| A e. _V ) |
|
3 | 2 | biimpi | |- ( A =/= (/) -> |^| A e. _V ) |
4 | 3 | adantl | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. _V ) |
5 | 1 4 | eqeltrrd | |- ( ( A C_ On /\ A =/= (/) ) -> U. { x e. On | A. y e. A x C_ y } e. _V ) |