Description: Condition when the supremum of a set of ordinals is the maximum element of that set. (Contributed by RP, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsupeqmax | |- ( ( A C_ On /\ A e. V ) -> ( E. x e. A A. y e. A y C_ x <-> U. A e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unielid | |- ( U. A e. A <-> E. x e. A A. y e. A y C_ x ) |
|
| 2 | 1 | a1i | |- ( ( A C_ On /\ A e. V ) -> ( U. A e. A <-> E. x e. A A. y e. A y C_ x ) ) |
| 3 | 2 | bicomd | |- ( ( A C_ On /\ A e. V ) -> ( E. x e. A A. y e. A y C_ x <-> U. A e. A ) ) |