Metamath Proof Explorer


Theorem unielid

Description: Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion unielid
|- ( U. A e. A <-> E. x e. A A. y e. A y C_ x )

Proof

Step Hyp Ref Expression
1 ssid
 |-  A C_ A
2 unielss
 |-  ( A C_ A -> ( U. A e. A <-> E. x e. A A. y e. A y C_ x ) )
3 1 2 ax-mp
 |-  ( U. A e. A <-> E. x e. A A. y e. A y C_ x )