Description: Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | unielid | |- ( U. A e. A <-> E. x e. A A. y e. A y C_ x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | |- A C_ A |
|
2 | unielss | |- ( A C_ A -> ( U. A e. A <-> E. x e. A A. y e. A y C_ x ) ) |
|
3 | 1 2 | ax-mp | |- ( U. A e. A <-> E. x e. A A. y e. A y C_ x ) |