Description: Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | unielid | ⊢ ( ∪ 𝐴 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
2 | unielss | ⊢ ( 𝐴 ⊆ 𝐴 → ( ∪ 𝐴 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ∪ 𝐴 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |