| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniel |
⊢ ( ∪ 𝐵 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) |
| 2 |
|
df-ss |
⊢ ( 𝑦 ⊆ 𝑥 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) |
| 3 |
2
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) |
| 4 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 5 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝐵 → ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 6 |
5
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 7 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 8 |
4 6 7
|
3bitr2i |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 9 |
3 8
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∀ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 10 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 11 |
|
pm2.27 |
⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 12 |
|
elequ2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥 ) ) |
| 13 |
12
|
imbi1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ) |
| 14 |
13 12
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ( ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 15 |
14
|
rspcev |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 16 |
10 11 15
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 17 |
|
r19.35 |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) |
| 18 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 19 |
18
|
imbi1i |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) |
| 20 |
17 19
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) |
| 21 |
16 20
|
sylib |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) |
| 22 |
21
|
impancom |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) → ( 𝑧 ∈ 𝑥 → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) |
| 23 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) |
| 24 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) |
| 25 |
23 24
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 26 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝑥 |
| 27 |
|
sp |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 28 |
27
|
adantl |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 29 |
25 26 28
|
rexlimd |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) → ( ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) |
| 30 |
22 29
|
impbid |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) → ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) |
| 31 |
|
rspe |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑦 ) → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) |
| 32 |
31
|
ex |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) |
| 33 |
32
|
ax-gen |
⊢ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) |
| 34 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 |
| 35 |
26 34
|
nfbi |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) |
| 36 |
|
imbi2 |
⊢ ( ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) → ( ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) ) |
| 37 |
36
|
imbi2d |
⊢ ( ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) ) ) |
| 38 |
35 37
|
albid |
⊢ ( ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) ) ) |
| 39 |
38
|
adantl |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) ) ) |
| 40 |
33 39
|
mpbiri |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 41 |
30 40
|
impbida |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) ) |
| 42 |
41
|
albidv |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) ) |
| 43 |
9 42
|
bitrid |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) ) |
| 44 |
43
|
rexbidva |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑧 ∈ 𝑦 ) ) ) |
| 45 |
1 44
|
bitr4id |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∪ 𝐵 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) |