Metamath Proof Explorer


Theorem uniel

Description: Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion uniel ( 𝐴𝐵 ↔ ∃ 𝑥𝐵𝑧 ( 𝑧𝑥 ↔ ∃ 𝑦𝐴 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 clabel ( { 𝑧 ∣ ∃ 𝑦𝐴 𝑧𝑦 } ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ ∀ 𝑧 ( 𝑧𝑥 ↔ ∃ 𝑦𝐴 𝑧𝑦 ) ) )
2 dfuni2 𝐴 = { 𝑧 ∣ ∃ 𝑦𝐴 𝑧𝑦 }
3 2 eleq1i ( 𝐴𝐵 ↔ { 𝑧 ∣ ∃ 𝑦𝐴 𝑧𝑦 } ∈ 𝐵 )
4 df-rex ( ∃ 𝑥𝐵𝑧 ( 𝑧𝑥 ↔ ∃ 𝑦𝐴 𝑧𝑦 ) ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ ∀ 𝑧 ( 𝑧𝑥 ↔ ∃ 𝑦𝐴 𝑧𝑦 ) ) )
5 1 3 4 3bitr4i ( 𝐴𝐵 ↔ ∃ 𝑥𝐵𝑧 ( 𝑧𝑥 ↔ ∃ 𝑦𝐴 𝑧𝑦 ) )