Description: Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniel | ⊢ ( ∪ 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clabel | ⊢ ( { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 } ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) ) | |
| 2 | dfuni2 | ⊢ ∪ 𝐴 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 } | |
| 3 | 2 | eleq1i | ⊢ ( ∪ 𝐴 ∈ 𝐵 ↔ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 } ∈ 𝐵 ) |
| 4 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) ) | |
| 5 | 1 3 4 | 3bitr4i | ⊢ ( ∪ 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |