Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Set Theory and Ordinal Numbers
uniel
Next ⟩
unielss
Metamath Proof Explorer
Ascii
Unicode
Theorem
uniel
Description:
Two ways to say a union is an element of a class.
(Contributed by
RP
, 27-Jan-2025)
Ref
Expression
Assertion
uniel
⊢
⋃
A
∈
B
↔
∃
x
∈
B
∀
z
z
∈
x
↔
∃
y
∈
A
z
∈
y
Proof
Step
Hyp
Ref
Expression
1
clabel
⊢
z
|
∃
y
∈
A
z
∈
y
∈
B
↔
∃
x
x
∈
B
∧
∀
z
z
∈
x
↔
∃
y
∈
A
z
∈
y
2
dfuni2
⊢
⋃
A
=
z
|
∃
y
∈
A
z
∈
y
3
2
eleq1i
⊢
⋃
A
∈
B
↔
z
|
∃
y
∈
A
z
∈
y
∈
B
4
df-rex
⊢
∃
x
∈
B
∀
z
z
∈
x
↔
∃
y
∈
A
z
∈
y
↔
∃
x
x
∈
B
∧
∀
z
z
∈
x
↔
∃
y
∈
A
z
∈
y
5
1
3
4
3bitr4i
⊢
⋃
A
∈
B
↔
∃
x
∈
B
∀
z
z
∈
x
↔
∃
y
∈
A
z
∈
y