Metamath Proof Explorer


Theorem uniel

Description: Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion uniel A B x B z z x y A z y

Proof

Step Hyp Ref Expression
1 clabel z | y A z y B x x B z z x y A z y
2 dfuni2 A = z | y A z y
3 2 eleq1i A B z | y A z y B
4 df-rex x B z z x y A z y x x B z z x y A z y
5 1 3 4 3bitr4i A B x B z z x y A z y