Description: Condition when the supremum of a set of ordinals is the maximum element of that set. (Contributed by RP, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsupeqmax | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∪ 𝐴 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unielid | ⊢ ( ∪ 𝐴 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ( ∪ 𝐴 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
| 3 | 2 | bicomd | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∪ 𝐴 ∈ 𝐴 ) ) |