Metamath Proof Explorer


Theorem onsupeqmax

Description: Condition when the supremum of a set of ordinals is the maximum element of that set. (Contributed by RP, 24-Jan-2025)

Ref Expression
Assertion onsupeqmax ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → ( ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 𝐴𝐴 ) )

Proof

Step Hyp Ref Expression
1 unielid ( 𝐴𝐴 ↔ ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 )
2 1 a1i ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → ( 𝐴𝐴 ↔ ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 ) )
3 2 bicomd ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → ( ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 𝐴𝐴 ) )