Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ On ) |
2 |
1
|
sselda |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
3 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ On ) |
5 |
|
ontri1 |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦 ) ) |
6 |
2 4 5
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦 ) ) |
7 |
6
|
ralbidva |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) ) |
8 |
7
|
rexbidva |
⊢ ( 𝐴 ⊆ On → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) ) |
9 |
8
|
notbid |
⊢ ( 𝐴 ⊆ On → ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) ) |
10 |
9
|
bicomd |
⊢ ( 𝐴 ⊆ On → ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
11 |
|
dfrex2 |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) |
12 |
11
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) |
13 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) |
14 |
12 13
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) |
15 |
|
unielid |
⊢ ( ∪ 𝐴 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
16 |
15
|
notbii |
⊢ ( ¬ ∪ 𝐴 ∈ 𝐴 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
17 |
10 14 16
|
3bitr4g |
⊢ ( 𝐴 ⊆ On → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ¬ ∪ 𝐴 ∈ 𝐴 ) ) |
18 |
|
onsupnmax |
⊢ ( 𝐴 ⊆ On → ( ¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴 ) ) |
19 |
18
|
pm4.71rd |
⊢ ( 𝐴 ⊆ On → ( ¬ ∪ 𝐴 ∈ 𝐴 ↔ ( ∪ 𝐴 = ∪ ∪ 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ) ) |
20 |
17 19
|
bitrd |
⊢ ( 𝐴 ⊆ On → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ( ∪ 𝐴 = ∪ ∪ 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ) ) |