Metamath Proof Explorer


Theorem onsupeqnmax

Description: Condition when the supremum of a class of ordinals is not the maximum element of that class. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupeqnmax ( 𝐴 ⊆ On → ( ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → 𝐴 ⊆ On )
2 1 sselda ( ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → 𝑦 ∈ On )
3 ssel2 ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
4 3 adantr ( ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → 𝑥 ∈ On )
5 ontri1 ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦𝑥 ↔ ¬ 𝑥𝑦 ) )
6 2 4 5 syl2anc ( ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑦𝑥 ↔ ¬ 𝑥𝑦 ) )
7 6 ralbidva ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → ( ∀ 𝑦𝐴 𝑦𝑥 ↔ ∀ 𝑦𝐴 ¬ 𝑥𝑦 ) )
8 7 rexbidva ( 𝐴 ⊆ On → ( ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ) )
9 8 notbid ( 𝐴 ⊆ On → ( ¬ ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ) )
10 9 bicomd ( 𝐴 ⊆ On → ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 ) )
11 dfrex2 ( ∃ 𝑦𝐴 𝑥𝑦 ↔ ¬ ∀ 𝑦𝐴 ¬ 𝑥𝑦 )
12 11 ralbii ( ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ∀ 𝑥𝐴 ¬ ∀ 𝑦𝐴 ¬ 𝑥𝑦 )
13 ralnex ( ∀ 𝑥𝐴 ¬ ∀ 𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )
14 12 13 bitri ( ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )
15 unielid ( 𝐴𝐴 ↔ ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 )
16 15 notbii ( ¬ 𝐴𝐴 ↔ ¬ ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 )
17 10 14 16 3bitr4g ( 𝐴 ⊆ On → ( ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ¬ 𝐴𝐴 ) )
18 onsupnmax ( 𝐴 ⊆ On → ( ¬ 𝐴𝐴 𝐴 = 𝐴 ) )
19 18 pm4.71rd ( 𝐴 ⊆ On → ( ¬ 𝐴𝐴 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴 ) ) )
20 17 19 bitrd ( 𝐴 ⊆ On → ( ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴 ) ) )