Metamath Proof Explorer


Theorem onsuplub

Description: The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsuplub ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝐵 ∈ On ) → ( 𝐵 𝐴 ↔ ∃ 𝑧𝐴 𝐵𝑧 ) )

Proof

Step Hyp Ref Expression
1 eluni2 ( 𝐵 𝐴 ↔ ∃ 𝑧𝐴 𝐵𝑧 )
2 1 a1i ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ 𝐵 ∈ On ) → ( 𝐵 𝐴 ↔ ∃ 𝑧𝐴 𝐵𝑧 ) )