Description: The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsuplub | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑧 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 | ⊢ ( 𝐵 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑧 ) | |
2 | 1 | a1i | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑧 ) ) |