Description: The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsuplub | |- ( ( ( A C_ On /\ A e. V ) /\ B e. On ) -> ( B e. U. A <-> E. z e. A B e. z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 | |- ( B e. U. A <-> E. z e. A B e. z ) |
|
2 | 1 | a1i | |- ( ( ( A C_ On /\ A e. V ) /\ B e. On ) -> ( B e. U. A <-> E. z e. A B e. z ) ) |