Metamath Proof Explorer


Theorem onsupnub

Description: An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupnub
|- ( ( ( A C_ On /\ A e. V ) /\ ( B e. On /\ A. z e. A z C_ B ) ) -> U. A C_ B )

Proof

Step Hyp Ref Expression
1 simprr
 |-  ( ( ( A C_ On /\ A e. V ) /\ ( B e. On /\ A. z e. A z C_ B ) ) -> A. z e. A z C_ B )
2 unissb
 |-  ( U. A C_ B <-> A. z e. A z C_ B )
3 1 2 sylibr
 |-  ( ( ( A C_ On /\ A e. V ) /\ ( B e. On /\ A. z e. A z C_ B ) ) -> U. A C_ B )