Description: An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupnub | |- ( ( ( A C_ On /\ A e. V ) /\ ( B e. On /\ A. z e. A z C_ B ) ) -> U. A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr | |- ( ( ( A C_ On /\ A e. V ) /\ ( B e. On /\ A. z e. A z C_ B ) ) -> A. z e. A z C_ B ) |
|
2 | unissb | |- ( U. A C_ B <-> A. z e. A z C_ B ) |
|
3 | 1 2 | sylibr | |- ( ( ( A C_ On /\ A e. V ) /\ ( B e. On /\ A. z e. A z C_ B ) ) -> U. A C_ B ) |