Description: An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsupnub | |- ( ( ( A C_ On /\ A e. V ) /\ ( B e. On /\ A. z e. A z C_ B ) ) -> U. A C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( ( A C_ On /\ A e. V ) /\ ( B e. On /\ A. z e. A z C_ B ) ) -> A. z e. A z C_ B ) |
|
| 2 | unissb | |- ( U. A C_ B <-> A. z e. A z C_ B ) |
|
| 3 | 1 2 | sylibr | |- ( ( ( A C_ On /\ A e. V ) /\ ( B e. On /\ A. z e. A z C_ B ) ) -> U. A C_ B ) |