Description: An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupnub | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ On ∧ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵 ) ) → ∪ 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ On ∧ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵 ) ) → ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵 ) | |
2 | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵 ) | |
3 | 1 2 | sylibr | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ On ∧ ∀ 𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵 ) ) → ∪ 𝐴 ⊆ 𝐵 ) |