Metamath Proof Explorer


Theorem onsupnub

Description: An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupnub ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ ( 𝐵 ∈ On ∧ ∀ 𝑧𝐴 𝑧𝐵 ) ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 simprr ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ ( 𝐵 ∈ On ∧ ∀ 𝑧𝐴 𝑧𝐵 ) ) → ∀ 𝑧𝐴 𝑧𝐵 )
2 unissb ( 𝐴𝐵 ↔ ∀ 𝑧𝐴 𝑧𝐵 )
3 1 2 sylibr ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ ( 𝐵 ∈ On ∧ ∀ 𝑧𝐴 𝑧𝐵 ) ) → 𝐴𝐵 )