Metamath Proof Explorer


Theorem onfisupcl

Description: Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi . (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onfisupcl ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 ) )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → 𝐴 ⊆ On )
2 simprl ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → 𝐴 ∈ Fin )
3 simprr ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → 𝐴 ≠ ∅ )
4 1 2 3 3jca ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) )
5 ordunifi ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 )
6 4 5 syl ( ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → 𝐴𝐴 )
7 6 ex ( ( 𝐴 ⊆ On ∧ 𝐴𝑉 ) → ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 ) )