Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → 𝐴 ⊆ On ) |
2 |
|
simprl |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → 𝐴 ∈ Fin ) |
3 |
|
simprr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → 𝐴 ≠ ∅ ) |
4 |
1 2 3
|
3jca |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) |
5 |
|
ordunifi |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∪ 𝐴 ∈ 𝐴 ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) → ∪ 𝐴 ∈ 𝐴 ) |
7 |
6
|
ex |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∪ 𝐴 ∈ 𝐴 ) ) |