Metamath Proof Explorer


Theorem onfisupcl

Description: Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi . (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onfisupcl A On A V A Fin A A A

Proof

Step Hyp Ref Expression
1 simpll A On A V A Fin A A On
2 simprl A On A V A Fin A A Fin
3 simprr A On A V A Fin A A
4 1 2 3 3jca A On A V A Fin A A On A Fin A
5 ordunifi A On A Fin A A A
6 4 5 syl A On A V A Fin A A A
7 6 ex A On A V A Fin A A A