Metamath Proof Explorer


Theorem onfisupcl

Description: Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi . (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onfisupcl
|- ( ( A C_ On /\ A e. V ) -> ( ( A e. Fin /\ A =/= (/) ) -> U. A e. A ) )

Proof

Step Hyp Ref Expression
1 simpll
 |-  ( ( ( A C_ On /\ A e. V ) /\ ( A e. Fin /\ A =/= (/) ) ) -> A C_ On )
2 simprl
 |-  ( ( ( A C_ On /\ A e. V ) /\ ( A e. Fin /\ A =/= (/) ) ) -> A e. Fin )
3 simprr
 |-  ( ( ( A C_ On /\ A e. V ) /\ ( A e. Fin /\ A =/= (/) ) ) -> A =/= (/) )
4 1 2 3 3jca
 |-  ( ( ( A C_ On /\ A e. V ) /\ ( A e. Fin /\ A =/= (/) ) ) -> ( A C_ On /\ A e. Fin /\ A =/= (/) ) )
5 ordunifi
 |-  ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> U. A e. A )
6 4 5 syl
 |-  ( ( ( A C_ On /\ A e. V ) /\ ( A e. Fin /\ A =/= (/) ) ) -> U. A e. A )
7 6 ex
 |-  ( ( A C_ On /\ A e. V ) -> ( ( A e. Fin /\ A =/= (/) ) -> U. A e. A ) )