Metamath Proof Explorer


Theorem oninfex2

Description: The infimum of a non-empty class of ordinals exists. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfex2 A On A x On | y A x y V

Proof

Step Hyp Ref Expression
1 onintunirab A On A A = x On | y A x y
2 intex A A V
3 2 biimpi A A V
4 3 adantl A On A A V
5 1 4 eqeltrrd A On A x On | y A x y V