Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Set Theory and Ordinal Numbers
oninfex2
Next ⟩
onsupeqmax
Metamath Proof Explorer
Ascii
Unicode
Theorem
oninfex2
Description:
The infimum of a non-empty class of ordinals exists.
(Contributed by
RP
, 23-Jan-2025)
Ref
Expression
Assertion
oninfex2
⊢
A
⊆
On
∧
A
≠
∅
→
⋃
x
∈
On
|
∀
y
∈
A
x
⊆
y
∈
V
Proof
Step
Hyp
Ref
Expression
1
onintunirab
⊢
A
⊆
On
∧
A
≠
∅
→
⋂
A
=
⋃
x
∈
On
|
∀
y
∈
A
x
⊆
y
2
intex
⊢
A
≠
∅
↔
⋂
A
∈
V
3
2
biimpi
⊢
A
≠
∅
→
⋂
A
∈
V
4
3
adantl
⊢
A
⊆
On
∧
A
≠
∅
→
⋂
A
∈
V
5
1
4
eqeltrrd
⊢
A
⊆
On
∧
A
≠
∅
→
⋃
x
∈
On
|
∀
y
∈
A
x
⊆
y
∈
V