| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
| 2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 4 |
|
cantnf0.a |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 5 |
|
eqid |
⊢ OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) |
| 6 |
|
fconst6g |
⊢ ( ∅ ∈ 𝐴 → ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ) |
| 8 |
3 4
|
fczfsuppd |
⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) finSupp ∅ ) |
| 9 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( ( 𝐵 × { ∅ } ) ∈ 𝑆 ↔ ( ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ∧ ( 𝐵 × { ∅ } ) finSupp ∅ ) ) ) |
| 10 |
7 8 9
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) ∈ 𝑆 ) |
| 11 |
|
eqid |
⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
| 12 |
1 2 3 5 10 11
|
cantnfval |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ) ) |
| 13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) = ( 𝐵 × { ∅ } ) ) |
| 14 |
|
0ex |
⊢ ∅ ∈ V |
| 15 |
|
fnconstg |
⊢ ( ∅ ∈ V → ( 𝐵 × { ∅ } ) Fn 𝐵 ) |
| 16 |
14 15
|
mp1i |
⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) Fn 𝐵 ) |
| 17 |
14
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
| 18 |
|
fnsuppeq0 |
⊢ ( ( ( 𝐵 × { ∅ } ) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ ↔ ( 𝐵 × { ∅ } ) = ( 𝐵 × { ∅ } ) ) ) |
| 19 |
16 3 17 18
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ ↔ ( 𝐵 × { ∅ } ) = ( 𝐵 × { ∅ } ) ) ) |
| 20 |
13 19
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ ) |
| 21 |
|
oieq2 |
⊢ ( ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ → OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = OrdIso ( E , ∅ ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = OrdIso ( E , ∅ ) ) |
| 23 |
22
|
dmeqd |
⊢ ( 𝜑 → dom OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = dom OrdIso ( E , ∅ ) ) |
| 24 |
|
we0 |
⊢ E We ∅ |
| 25 |
|
eqid |
⊢ OrdIso ( E , ∅ ) = OrdIso ( E , ∅ ) |
| 26 |
25
|
oien |
⊢ ( ( ∅ ∈ V ∧ E We ∅ ) → dom OrdIso ( E , ∅ ) ≈ ∅ ) |
| 27 |
14 24 26
|
mp2an |
⊢ dom OrdIso ( E , ∅ ) ≈ ∅ |
| 28 |
|
en0 |
⊢ ( dom OrdIso ( E , ∅ ) ≈ ∅ ↔ dom OrdIso ( E , ∅ ) = ∅ ) |
| 29 |
27 28
|
mpbi |
⊢ dom OrdIso ( E , ∅ ) = ∅ |
| 30 |
23 29
|
eqtrdi |
⊢ ( 𝜑 → dom OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) = ∅ ) |
| 31 |
30
|
fveq2d |
⊢ ( 𝜑 → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) ) |
| 32 |
11
|
seqom0g |
⊢ ( ∅ ∈ V → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
| 33 |
14 32
|
mp1i |
⊢ ( 𝜑 → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
| 34 |
12 31 33
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) = ∅ ) |