Metamath Proof Explorer


Theorem cantnf0

Description: The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnf0.a φA
Assertion cantnf0 φACNFBB×=

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnf0.a φA
5 eqid OrdIsoEB×supp=OrdIsoEB×supp
6 fconst6g AB×:BA
7 4 6 syl φB×:BA
8 3 4 fczfsuppd φfinSuppB×
9 1 2 3 cantnfs φB×SB×:BAfinSuppB×
10 7 8 9 mpbir2and φB×S
11 eqid seqωkV,zVA𝑜OrdIsoEB×suppk𝑜B×OrdIsoEB×suppk+𝑜z=seqωkV,zVA𝑜OrdIsoEB×suppk𝑜B×OrdIsoEB×suppk+𝑜z
12 1 2 3 5 10 11 cantnfval φACNFBB×=seqωkV,zVA𝑜OrdIsoEB×suppk𝑜B×OrdIsoEB×suppk+𝑜zdomOrdIsoEB×supp
13 eqidd φB×=B×
14 0ex V
15 fnconstg VB×FnB
16 14 15 mp1i φB×FnB
17 14 a1i φV
18 fnsuppeq0 B×FnBBOnVB×supp=B×=B×
19 16 3 17 18 syl3anc φB×supp=B×=B×
20 13 19 mpbird φB×supp=
21 oieq2 B×supp=OrdIsoEB×supp=OrdIsoE
22 20 21 syl φOrdIsoEB×supp=OrdIsoE
23 22 dmeqd φdomOrdIsoEB×supp=domOrdIsoE
24 we0 EWe
25 eqid OrdIsoE=OrdIsoE
26 25 oien VEWedomOrdIsoE
27 14 24 26 mp2an domOrdIsoE
28 en0 domOrdIsoEdomOrdIsoE=
29 27 28 mpbi domOrdIsoE=
30 23 29 eqtrdi φdomOrdIsoEB×supp=
31 30 fveq2d φseqωkV,zVA𝑜OrdIsoEB×suppk𝑜B×OrdIsoEB×suppk+𝑜zdomOrdIsoEB×supp=seqωkV,zVA𝑜OrdIsoEB×suppk𝑜B×OrdIsoEB×suppk+𝑜z
32 11 seqom0g VseqωkV,zVA𝑜OrdIsoEB×suppk𝑜B×OrdIsoEB×suppk+𝑜z=
33 14 32 mp1i φseqωkV,zVA𝑜OrdIsoEB×suppk𝑜B×OrdIsoEB×suppk+𝑜z=
34 12 31 33 3eqtrd φACNFBB×=