Metamath Proof Explorer


Theorem cantnfval

Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnfcl.g G=OrdIsoEFsupp
cantnfcl.f φFS
cantnfval.h H=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
Assertion cantnfval φACNFBF=HdomG

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnfcl.g G=OrdIsoEFsupp
5 cantnfcl.f φFS
6 cantnfval.h H=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
7 eqid gAB|finSuppg=gAB|finSuppg
8 7 2 3 cantnffval φACNFB=fgAB|finSuppgOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
9 8 fveq1d φACNFBF=fgAB|finSuppgOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhF
10 7 2 3 cantnfdm φdomACNFB=gAB|finSuppg
11 1 10 eqtrid φS=gAB|finSuppg
12 5 11 eleqtrd φFgAB|finSuppg
13 ovex fsuppV
14 eqid OrdIsoEfsupp=OrdIsoEfsupp
15 14 oiexg fsuppVOrdIsoEfsuppV
16 13 15 mp1i f=FOrdIsoEfsuppV
17 simpr f=Fh=OrdIsoEfsupph=OrdIsoEfsupp
18 oveq1 f=Ffsupp=Fsupp
19 18 adantr f=Fh=OrdIsoEfsuppfsupp=Fsupp
20 oieq2 fsupp=FsuppOrdIsoEfsupp=OrdIsoEFsupp
21 19 20 syl f=Fh=OrdIsoEfsuppOrdIsoEfsupp=OrdIsoEFsupp
22 17 21 eqtrd f=Fh=OrdIsoEfsupph=OrdIsoEFsupp
23 22 4 eqtr4di f=Fh=OrdIsoEfsupph=G
24 23 fveq1d f=Fh=OrdIsoEfsupphk=Gk
25 24 oveq2d f=Fh=OrdIsoEfsuppA𝑜hk=A𝑜Gk
26 simpl f=Fh=OrdIsoEfsuppf=F
27 26 24 fveq12d f=Fh=OrdIsoEfsuppfhk=FGk
28 25 27 oveq12d f=Fh=OrdIsoEfsuppA𝑜hk𝑜fhk=A𝑜Gk𝑜FGk
29 28 oveq1d f=Fh=OrdIsoEfsuppA𝑜hk𝑜fhk+𝑜z=A𝑜Gk𝑜FGk+𝑜z
30 29 mpoeq3dv f=Fh=OrdIsoEfsuppkV,zVA𝑜hk𝑜fhk+𝑜z=kV,zVA𝑜Gk𝑜FGk+𝑜z
31 eqid =
32 seqomeq12 kV,zVA𝑜hk𝑜fhk+𝑜z=kV,zVA𝑜Gk𝑜FGk+𝑜z=seqωkV,zVA𝑜hk𝑜fhk+𝑜z=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
33 30 31 32 sylancl f=Fh=OrdIsoEfsuppseqωkV,zVA𝑜hk𝑜fhk+𝑜z=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
34 33 6 eqtr4di f=Fh=OrdIsoEfsuppseqωkV,zVA𝑜hk𝑜fhk+𝑜z=H
35 23 dmeqd f=Fh=OrdIsoEfsuppdomh=domG
36 34 35 fveq12d f=Fh=OrdIsoEfsuppseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh=HdomG
37 16 36 csbied f=FOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh=HdomG
38 eqid fgAB|finSuppgOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh=fgAB|finSuppgOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
39 fvex HdomGV
40 37 38 39 fvmpt FgAB|finSuppgfgAB|finSuppgOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhF=HdomG
41 12 40 syl φfgAB|finSuppgOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhF=HdomG
42 9 41 eqtrd φACNFBF=HdomG