Metamath Proof Explorer


Theorem bropabg

Description: Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt . (Contributed by RP, 26-Sep-2024)

Ref Expression
Hypotheses bropabg.xA ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
bropabg.yB ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
bropabg.R 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
Assertion bropabg ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 bropabg.xA ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 bropabg.yB ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 bropabg.R 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
4 3 bropaex12 ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
5 1 2 3 brabg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝑅 𝐵𝜒 ) )
6 4 5 biadanii ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) )