Metamath Proof Explorer
Description: Equivalence for two classes related by an ordered-pair class
abstraction. A generalization of brsslt . (Contributed by RP, 26-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
bropabg.xA |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
bropabg.yB |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
bropabg.R |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
|
Assertion |
bropabg |
⊢ ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bropabg.xA |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
bropabg.yB |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
| 3 |
|
bropabg.R |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
| 4 |
3
|
bropaex12 |
⊢ ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 5 |
1 2 3
|
brabg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝑅 𝐵 ↔ 𝜒 ) ) |
| 6 |
4 5
|
biadanii |
⊢ ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝜒 ) ) |