Metamath Proof Explorer


Theorem cantnflt2

Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 29-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnflt2.f φFS
cantnflt2.a φA
cantnflt2.c φCOn
cantnflt2.s φFsuppC
Assertion cantnflt2 φACNFBFA𝑜C

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnflt2.f φFS
5 cantnflt2.a φA
6 cantnflt2.c φCOn
7 cantnflt2.s φFsuppC
8 eqid OrdIsoEFsupp=OrdIsoEFsupp
9 eqid seqωkV,zVA𝑜OrdIsoEFsuppk𝑜FOrdIsoEFsuppk+𝑜z=seqωkV,zVA𝑜OrdIsoEFsuppk𝑜FOrdIsoEFsuppk+𝑜z
10 1 2 3 8 4 9 cantnfval φACNFBF=seqωkV,zVA𝑜OrdIsoEFsuppk𝑜FOrdIsoEFsuppk+𝑜zdomOrdIsoEFsupp
11 ovexd φFsuppV
12 8 oion FsuppVdomOrdIsoEFsuppOn
13 sucidg domOrdIsoEFsuppOndomOrdIsoEFsuppsucdomOrdIsoEFsupp
14 11 12 13 3syl φdomOrdIsoEFsuppsucdomOrdIsoEFsupp
15 1 2 3 8 4 cantnfcl φEWesuppFdomOrdIsoEFsuppω
16 15 simpld φEWesuppF
17 8 oiiso FsuppVEWesuppFOrdIsoEFsuppIsomE,EdomOrdIsoEFsuppFsupp
18 11 16 17 syl2anc φOrdIsoEFsuppIsomE,EdomOrdIsoEFsuppFsupp
19 isof1o OrdIsoEFsuppIsomE,EdomOrdIsoEFsuppFsuppOrdIsoEFsupp:domOrdIsoEFsupp1-1 ontoFsupp
20 f1ofo OrdIsoEFsupp:domOrdIsoEFsupp1-1 ontoFsuppOrdIsoEFsupp:domOrdIsoEFsuppontoFsupp
21 foima OrdIsoEFsupp:domOrdIsoEFsuppontoFsuppOrdIsoEFsuppdomOrdIsoEFsupp=Fsupp
22 18 19 20 21 4syl φOrdIsoEFsuppdomOrdIsoEFsupp=Fsupp
23 22 7 eqsstrd φOrdIsoEFsuppdomOrdIsoEFsuppC
24 1 2 3 8 4 9 5 14 6 23 cantnflt φseqωkV,zVA𝑜OrdIsoEFsuppk𝑜FOrdIsoEFsuppk+𝑜zdomOrdIsoEFsuppA𝑜C
25 10 24 eqeltrd φACNFBFA𝑜C