Description: The CNF function is a function from finitely supported functions from B to A , to the ordinal exponential A ^o B . (Contributed by Mario Carneiro, 28-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfs.s | |
|
cantnfs.a | |
||
cantnfs.b | |
||
Assertion | cantnff | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | |
|
2 | cantnfs.a | |
|
3 | cantnfs.b | |
|
4 | fvex | |
|
5 | 4 | csbex | |
6 | 5 | a1i | |
7 | eqid | |
|
8 | 7 2 3 | cantnffval | |
9 | 7 2 3 | cantnfdm | |
10 | 1 9 | eqtrid | |
11 | 10 | mpteq1d | |
12 | 8 11 | eqtr4d | |
13 | 2 | adantr | |
14 | 3 | adantr | |
15 | eqid | |
|
16 | simpr | |
|
17 | eqid | |
|
18 | 1 13 14 15 16 17 | cantnfval | |
19 | 18 | adantr | |
20 | ovex | |
|
21 | 1 13 14 15 16 | cantnfcl | |
22 | 21 | simpld | |
23 | 15 | oien | |
24 | 20 22 23 | sylancr | |
25 | 24 | adantr | |
26 | suppssdm | |
|
27 | 1 2 3 | cantnfs | |
28 | 27 | simprbda | |
29 | 26 28 | fssdm | |
30 | feq3 | |
|
31 | 28 30 | syl5ibcom | |
32 | 31 | imp | |
33 | f00 | |
|
34 | 32 33 | sylib | |
35 | 34 | simprd | |
36 | sseq0 | |
|
37 | 29 35 36 | syl2an2r | |
38 | 25 37 | breqtrd | |
39 | en0 | |
|
40 | 38 39 | sylib | |
41 | 40 | fveq2d | |
42 | 0ex | |
|
43 | 17 | seqom0g | |
44 | 42 43 | mp1i | |
45 | 19 41 44 | 3eqtrd | |
46 | el1o | |
|
47 | 45 46 | sylibr | |
48 | 35 | oveq2d | |
49 | 13 | adantr | |
50 | oe0 | |
|
51 | 49 50 | syl | |
52 | 48 51 | eqtrd | |
53 | 47 52 | eleqtrrd | |
54 | 13 | adantr | |
55 | 14 | adantr | |
56 | 16 | adantr | |
57 | on0eln0 | |
|
58 | 13 57 | syl | |
59 | 58 | biimpar | |
60 | 29 | adantr | |
61 | 1 54 55 56 59 55 60 | cantnflt2 | |
62 | 53 61 | pm2.61dane | |
63 | 6 12 62 | fmpt2d | |