| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|
| 2 |
|
cantnfs.a |
|
| 3 |
|
cantnfs.b |
|
| 4 |
|
fvex |
|
| 5 |
4
|
csbex |
|
| 6 |
5
|
a1i |
|
| 7 |
|
eqid |
|
| 8 |
7 2 3
|
cantnffval |
|
| 9 |
7 2 3
|
cantnfdm |
|
| 10 |
1 9
|
eqtrid |
|
| 11 |
10
|
mpteq1d |
|
| 12 |
8 11
|
eqtr4d |
|
| 13 |
2
|
adantr |
|
| 14 |
3
|
adantr |
|
| 15 |
|
eqid |
|
| 16 |
|
simpr |
|
| 17 |
|
eqid |
|
| 18 |
1 13 14 15 16 17
|
cantnfval |
|
| 19 |
18
|
adantr |
|
| 20 |
|
ovex |
|
| 21 |
1 13 14 15 16
|
cantnfcl |
|
| 22 |
21
|
simpld |
|
| 23 |
15
|
oien |
|
| 24 |
20 22 23
|
sylancr |
|
| 25 |
24
|
adantr |
|
| 26 |
|
suppssdm |
|
| 27 |
1 2 3
|
cantnfs |
|
| 28 |
27
|
simprbda |
|
| 29 |
26 28
|
fssdm |
|
| 30 |
|
feq3 |
|
| 31 |
28 30
|
syl5ibcom |
|
| 32 |
31
|
imp |
|
| 33 |
|
f00 |
|
| 34 |
32 33
|
sylib |
|
| 35 |
34
|
simprd |
|
| 36 |
|
sseq0 |
|
| 37 |
29 35 36
|
syl2an2r |
|
| 38 |
25 37
|
breqtrd |
|
| 39 |
|
en0 |
|
| 40 |
38 39
|
sylib |
|
| 41 |
40
|
fveq2d |
|
| 42 |
|
0ex |
|
| 43 |
17
|
seqom0g |
|
| 44 |
42 43
|
mp1i |
|
| 45 |
19 41 44
|
3eqtrd |
|
| 46 |
|
el1o |
|
| 47 |
45 46
|
sylibr |
|
| 48 |
35
|
oveq2d |
|
| 49 |
13
|
adantr |
|
| 50 |
|
oe0 |
|
| 51 |
49 50
|
syl |
|
| 52 |
48 51
|
eqtrd |
|
| 53 |
47 52
|
eleqtrrd |
|
| 54 |
13
|
adantr |
|
| 55 |
14
|
adantr |
|
| 56 |
16
|
adantr |
|
| 57 |
|
on0eln0 |
|
| 58 |
13 57
|
syl |
|
| 59 |
58
|
biimpar |
|
| 60 |
29
|
adantr |
|
| 61 |
1 54 55 56 59 55 60
|
cantnflt2 |
|
| 62 |
53 61
|
pm2.61dane |
|
| 63 |
6 12 62
|
fmpt2d |
|