Metamath Proof Explorer


Theorem cantnff

Description: The CNF function is a function from finitely supported functions from B to A , to the ordinal exponential A ^o B . (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
Assertion cantnff φACNFB:SA𝑜B

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 fvex seqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhV
5 4 csbex OrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhV
6 5 a1i φfSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhV
7 eqid gAB|finSuppg=gAB|finSuppg
8 7 2 3 cantnffval φACNFB=fgAB|finSuppgOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
9 7 2 3 cantnfdm φdomACNFB=gAB|finSuppg
10 1 9 eqtrid φS=gAB|finSuppg
11 10 mpteq1d φfSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh=fgAB|finSuppgOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
12 8 11 eqtr4d φACNFB=fSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
13 2 adantr φxSAOn
14 3 adantr φxSBOn
15 eqid OrdIsoExsupp=OrdIsoExsupp
16 simpr φxSxS
17 eqid seqωkV,zVA𝑜OrdIsoExsuppk𝑜xOrdIsoExsuppk+𝑜z=seqωkV,zVA𝑜OrdIsoExsuppk𝑜xOrdIsoExsuppk+𝑜z
18 1 13 14 15 16 17 cantnfval φxSACNFBx=seqωkV,zVA𝑜OrdIsoExsuppk𝑜xOrdIsoExsuppk+𝑜zdomOrdIsoExsupp
19 18 adantr φxSA=ACNFBx=seqωkV,zVA𝑜OrdIsoExsuppk𝑜xOrdIsoExsuppk+𝑜zdomOrdIsoExsupp
20 ovex xsuppV
21 1 13 14 15 16 cantnfcl φxSEWesuppxdomOrdIsoExsuppω
22 21 simpld φxSEWesuppx
23 15 oien xsuppVEWesuppxdomOrdIsoExsuppsuppx
24 20 22 23 sylancr φxSdomOrdIsoExsuppsuppx
25 24 adantr φxSA=domOrdIsoExsuppsuppx
26 suppssdm xsuppdomx
27 1 2 3 cantnfs φxSx:BAfinSuppx
28 27 simprbda φxSx:BA
29 26 28 fssdm φxSxsuppB
30 feq3 A=x:BAx:B
31 28 30 syl5ibcom φxSA=x:B
32 31 imp φxSA=x:B
33 f00 x:Bx=B=
34 32 33 sylib φxSA=x=B=
35 34 simprd φxSA=B=
36 sseq0 xsuppBB=xsupp=
37 29 35 36 syl2an2r φxSA=xsupp=
38 25 37 breqtrd φxSA=domOrdIsoExsupp
39 en0 domOrdIsoExsuppdomOrdIsoExsupp=
40 38 39 sylib φxSA=domOrdIsoExsupp=
41 40 fveq2d φxSA=seqωkV,zVA𝑜OrdIsoExsuppk𝑜xOrdIsoExsuppk+𝑜zdomOrdIsoExsupp=seqωkV,zVA𝑜OrdIsoExsuppk𝑜xOrdIsoExsuppk+𝑜z
42 0ex V
43 17 seqom0g VseqωkV,zVA𝑜OrdIsoExsuppk𝑜xOrdIsoExsuppk+𝑜z=
44 42 43 mp1i φxSA=seqωkV,zVA𝑜OrdIsoExsuppk𝑜xOrdIsoExsuppk+𝑜z=
45 19 41 44 3eqtrd φxSA=ACNFBx=
46 el1o ACNFBx1𝑜ACNFBx=
47 45 46 sylibr φxSA=ACNFBx1𝑜
48 35 oveq2d φxSA=A𝑜B=A𝑜
49 13 adantr φxSA=AOn
50 oe0 AOnA𝑜=1𝑜
51 49 50 syl φxSA=A𝑜=1𝑜
52 48 51 eqtrd φxSA=A𝑜B=1𝑜
53 47 52 eleqtrrd φxSA=ACNFBxA𝑜B
54 13 adantr φxSAAOn
55 14 adantr φxSABOn
56 16 adantr φxSAxS
57 on0eln0 AOnAA
58 13 57 syl φxSAA
59 58 biimpar φxSAA
60 29 adantr φxSAxsuppB
61 1 54 55 56 59 55 60 cantnflt2 φxSAACNFBxA𝑜B
62 53 61 pm2.61dane φxSACNFBxA𝑜B
63 6 12 62 fmpt2d φACNFB:SA𝑜B