Metamath Proof Explorer


Theorem cantnff

Description: The CNF function is a function from finitely supported functions from B to A , to the ordinal exponential A ^o B . (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s 𝑆 = dom ( 𝐴 CNF 𝐵 )
cantnfs.a ( 𝜑𝐴 ∈ On )
cantnfs.b ( 𝜑𝐵 ∈ On )
Assertion cantnff ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cantnfs.s 𝑆 = dom ( 𝐴 CNF 𝐵 )
2 cantnfs.a ( 𝜑𝐴 ∈ On )
3 cantnfs.b ( 𝜑𝐵 ∈ On )
4 fvex ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ∈ V
5 4 csbex OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ∈ V
6 5 a1i ( ( 𝜑𝑓𝑆 ) → OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ∈ V )
7 eqid { 𝑔 ∈ ( 𝐴m 𝐵 ) ∣ 𝑔 finSupp ∅ } = { 𝑔 ∈ ( 𝐴m 𝐵 ) ∣ 𝑔 finSupp ∅ }
8 7 2 3 cantnffval ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ) )
9 7 2 3 cantnfdm ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = { 𝑔 ∈ ( 𝐴m 𝐵 ) ∣ 𝑔 finSupp ∅ } )
10 1 9 syl5eq ( 𝜑𝑆 = { 𝑔 ∈ ( 𝐴m 𝐵 ) ∣ 𝑔 finSupp ∅ } )
11 10 mpteq1d ( 𝜑 → ( 𝑓𝑆 OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ) )
12 8 11 eqtr4d ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓𝑆 OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ) )
13 2 adantr ( ( 𝜑𝑥𝑆 ) → 𝐴 ∈ On )
14 3 adantr ( ( 𝜑𝑥𝑆 ) → 𝐵 ∈ On )
15 eqid OrdIso ( E , ( 𝑥 supp ∅ ) ) = OrdIso ( E , ( 𝑥 supp ∅ ) )
16 simpr ( ( 𝜑𝑥𝑆 ) → 𝑥𝑆 )
17 eqid seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ )
18 1 13 14 15 16 17 cantnfval ( ( 𝜑𝑥𝑆 ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ) )
19 18 adantr ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ) )
20 ovex ( 𝑥 supp ∅ ) ∈ V
21 1 13 14 15 16 cantnfcl ( ( 𝜑𝑥𝑆 ) → ( E We ( 𝑥 supp ∅ ) ∧ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ∈ ω ) )
22 21 simpld ( ( 𝜑𝑥𝑆 ) → E We ( 𝑥 supp ∅ ) )
23 15 oien ( ( ( 𝑥 supp ∅ ) ∈ V ∧ E We ( 𝑥 supp ∅ ) ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ( 𝑥 supp ∅ ) )
24 20 22 23 sylancr ( ( 𝜑𝑥𝑆 ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ( 𝑥 supp ∅ ) )
25 24 adantr ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ( 𝑥 supp ∅ ) )
26 suppssdm ( 𝑥 supp ∅ ) ⊆ dom 𝑥
27 1 2 3 cantnfs ( 𝜑 → ( 𝑥𝑆 ↔ ( 𝑥 : 𝐵𝐴𝑥 finSupp ∅ ) ) )
28 27 simprbda ( ( 𝜑𝑥𝑆 ) → 𝑥 : 𝐵𝐴 )
29 26 28 fssdm ( ( 𝜑𝑥𝑆 ) → ( 𝑥 supp ∅ ) ⊆ 𝐵 )
30 feq3 ( 𝐴 = ∅ → ( 𝑥 : 𝐵𝐴𝑥 : 𝐵 ⟶ ∅ ) )
31 28 30 syl5ibcom ( ( 𝜑𝑥𝑆 ) → ( 𝐴 = ∅ → 𝑥 : 𝐵 ⟶ ∅ ) )
32 31 imp ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → 𝑥 : 𝐵 ⟶ ∅ )
33 f00 ( 𝑥 : 𝐵 ⟶ ∅ ↔ ( 𝑥 = ∅ ∧ 𝐵 = ∅ ) )
34 32 33 sylib ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝑥 = ∅ ∧ 𝐵 = ∅ ) )
35 34 simprd ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → 𝐵 = ∅ )
36 sseq0 ( ( ( 𝑥 supp ∅ ) ⊆ 𝐵𝐵 = ∅ ) → ( 𝑥 supp ∅ ) = ∅ )
37 29 35 36 syl2an2r ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝑥 supp ∅ ) = ∅ )
38 25 37 breqtrd ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ∅ )
39 en0 ( dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ∅ ↔ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) = ∅ )
40 38 39 sylib ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) = ∅ )
41 40 fveq2d ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) )
42 0ex ∅ ∈ V
43 17 seqom0g ( ∅ ∈ V → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ )
44 42 43 mp1i ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ )
45 19 41 44 3eqtrd ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ∅ )
46 el1o ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ 1o ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ∅ )
47 45 46 sylibr ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ 1o )
48 35 oveq2d ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝐴o 𝐵 ) = ( 𝐴o ∅ ) )
49 13 adantr ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → 𝐴 ∈ On )
50 oe0 ( 𝐴 ∈ On → ( 𝐴o ∅ ) = 1o )
51 49 50 syl ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝐴o ∅ ) = 1o )
52 48 51 eqtrd ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝐴o 𝐵 ) = 1o )
53 47 52 eleqtrrd ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ ( 𝐴o 𝐵 ) )
54 13 adantr ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )
55 14 adantr ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ On )
56 16 adantr ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 ≠ ∅ ) → 𝑥𝑆 )
57 on0eln0 ( 𝐴 ∈ On → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
58 13 57 syl ( ( 𝜑𝑥𝑆 ) → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
59 58 biimpar ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 )
60 29 adantr ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 ≠ ∅ ) → ( 𝑥 supp ∅ ) ⊆ 𝐵 )
61 1 54 55 56 59 55 60 cantnflt2 ( ( ( 𝜑𝑥𝑆 ) ∧ 𝐴 ≠ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ ( 𝐴o 𝐵 ) )
62 53 61 pm2.61dane ( ( 𝜑𝑥𝑆 ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ ( 𝐴o 𝐵 ) )
63 6 12 62 fmpt2d ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴o 𝐵 ) )