| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ffun | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  →  Fun  𝐹 )  | 
						
						
							| 2 | 
							
								
							 | 
							frn | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  →  ran  𝐹  ⊆  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							ss0 | 
							⊢ ( ran  𝐹  ⊆  ∅  →  ran  𝐹  =  ∅ )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  →  ran  𝐹  =  ∅ )  | 
						
						
							| 5 | 
							
								
							 | 
							dm0rn0 | 
							⊢ ( dom  𝐹  =  ∅  ↔  ran  𝐹  =  ∅ )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sylibr | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  →  dom  𝐹  =  ∅ )  | 
						
						
							| 7 | 
							
								
							 | 
							df-fn | 
							⊢ ( 𝐹  Fn  ∅  ↔  ( Fun  𝐹  ∧  dom  𝐹  =  ∅ ) )  | 
						
						
							| 8 | 
							
								1 6 7
							 | 
							sylanbrc | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  →  𝐹  Fn  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							fn0 | 
							⊢ ( 𝐹  Fn  ∅  ↔  𝐹  =  ∅ )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylib | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  →  𝐹  =  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							fdm | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  →  dom  𝐹  =  𝐴 )  | 
						
						
							| 12 | 
							
								11 6
							 | 
							eqtr3d | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  →  𝐴  =  ∅ )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							jca | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  →  ( 𝐹  =  ∅  ∧  𝐴  =  ∅ ) )  | 
						
						
							| 14 | 
							
								
							 | 
							f0 | 
							⊢ ∅ : ∅ ⟶ ∅  | 
						
						
							| 15 | 
							
								
							 | 
							feq1 | 
							⊢ ( 𝐹  =  ∅  →  ( 𝐹 : 𝐴 ⟶ ∅  ↔  ∅ : 𝐴 ⟶ ∅ ) )  | 
						
						
							| 16 | 
							
								
							 | 
							feq2 | 
							⊢ ( 𝐴  =  ∅  →  ( ∅ : 𝐴 ⟶ ∅  ↔  ∅ : ∅ ⟶ ∅ ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							sylan9bb | 
							⊢ ( ( 𝐹  =  ∅  ∧  𝐴  =  ∅ )  →  ( 𝐹 : 𝐴 ⟶ ∅  ↔  ∅ : ∅ ⟶ ∅ ) )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							mpbiri | 
							⊢ ( ( 𝐹  =  ∅  ∧  𝐴  =  ∅ )  →  𝐹 : 𝐴 ⟶ ∅ )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							impbii | 
							⊢ ( 𝐹 : 𝐴 ⟶ ∅  ↔  ( 𝐹  =  ∅  ∧  𝐴  =  ∅ ) )  |